No Cover Image

Journal article 344 views 63 downloads

Intelligent recognition of defects in high‐speed railway slab track with limited dataset

Xiaopei Cai, Xueyang Tang, Shuo Pan, Yi Wang, Hai Yan, Yuheng Ren, Ning Chen, Yue Hou Orcid Logo

Computer-Aided Civil and Infrastructure Engineering, Volume: 39, Issue: 6, Pages: 911 - 928

Swansea University Author: Yue Hou Orcid Logo

  • 64680.VOR.pdf

    PDF | Version of Record

    © 2023 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals LLC on behalf of Editor. Distributed under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

    Download (2.86MB)

Check full text

DOI (Published version): 10.1111/mice.13109

Abstract

During the regular service life of high-speed railway (HSR), there might be serious defects in the concrete slabs of the infrastructure systems, which may further significantly affect public transportation safety. To address these serious issues and fulfill the regular functions of HSR, the traditio...

Full description

Published in: Computer-Aided Civil and Infrastructure Engineering
ISSN: 1093-9687 1467-8667
Published: Wiley 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa64680
Abstract: During the regular service life of high-speed railway (HSR), there might be serious defects in the concrete slabs of the infrastructure systems, which may further significantly affect public transportation safety. To address these serious issues and fulfill the regular functions of HSR, the traditional methods for railway engineers involve carrying out regular on-site inspections manually or by semi-automatic inspection vehicles, and conducting timely corresponding repairing approaches and maintenance, where these methods are time-consuming and dangerous. In recent years, machine learning methods have been widely applied to the intelligent and automatic detection of severe defects in HSR. Currently, one of the most serious problems is the lack of sufficient high-quality data for model training, resulting in low recognition accuracy in HSR defects. To solve this problem, this paper proposed an intelligent recognition of defects in concrete slabs of HSR based on a few-shot learning model, that is, an artificial intelligence model based on limited data size, which recognizes three service conditions of concrete slabs in HSR: cracks, track board gaps, and unbroken state. Lightweight few-shot learning models specifically designed for HSR detection were proposed. Experiments were conducted to compare the performances of different lightweight-designed models, including accuracy, parameter quantity, and testing time. Results showed that the optimum model can fast and satisfactorily recognize the defects in HSR with a very limited data size of 10 samples for each training category, with a satisfactory accuracy of 73.9% in the test dataset with 20 samples for each category, parameter amounts of 2.8 million, and a testing time of 2.2 s per image. This study provides a reference for the automatic recognition of defects in HSR by railway engineers with insufficient samples.
College: Faculty of Science and Engineering
Funders: This research is supported by the National Natural Science Foundation of China No. 52178405, Project of Science and Technology Research and Development Program of China State Railway Group Co., Ltd. No. SY2022T002; Open Fund of National Key Laboratory of High-speed Railway Track Technology No. 2021YJ053.
Issue: 6
Start Page: 911
End Page: 928