No Cover Image

Journal article 296 views 52 downloads

First-order phase transitions in Yang-Mills theories and the density of state method

Biagio Lucini Orcid Logo, David Mason Orcid Logo, Maurizio Piai Orcid Logo, Enrico Rinaldi Orcid Logo, Davide Vadacchino Orcid Logo, David Mason

Physical Review D, Volume: 108, Issue: 7

Swansea University Authors: Biagio Lucini Orcid Logo, Maurizio Piai Orcid Logo, David Mason

  • 64601.pdf

    PDF | Version of Record

    Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

    Download (4.7MB)

Abstract

When studied at finite temperature, Yang-Mills theories in 3 + 1 dimensions display the presence of confinement/deconfinement phase transitions, which are known to be of first order—the SU(2) gauge theory being the exception. Theoretical as well as phenomenological considerations indicate that it is...

Full description

Published in: Physical Review D
ISSN: 2470-0010 2470-0029
Published: American Physical Society (APS)
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa64601
first_indexed 2023-09-22T11:44:36Z
last_indexed 2024-11-25T14:14:19Z
id cronfa64601
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2024-04-04T12:34:51.6731335</datestamp><bib-version>v2</bib-version><id>64601</id><entry>2023-09-22</entry><title>First-order phase transitions in Yang-Mills theories and the density of state method</title><swanseaauthors><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3ce295f2c7cc318bac7da18f9989d8c3</sid><ORCID>0000-0002-2251-0111</ORCID><firstname>Maurizio</firstname><surname>Piai</surname><name>Maurizio Piai</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>341431eb263f8df9a38d8df4ae3d1cb2</sid><firstname>David</firstname><surname>Mason</surname><name>David Mason</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-09-22</date><deptcode>MACS</deptcode><abstract>When studied at finite temperature, Yang-Mills theories in 3 + 1 dimensions display the presence of confinement/deconfinement phase transitions, which are known to be of first order&#x2014;the SU(2) gauge theory being the exception. Theoretical as well as phenomenological considerations indicate that it is essential to establish a precise characterisation of these physical systems in proximity of such phase transitions. We present and test a new method to study the critical region of parameter space in non-Abelian quantum field theories on the lattice, based upon the Logarithmic Linear Relaxation (LLR) algorithm. We apply this method to the SU(3) Yang Mills lattice gauge theory, and perform extensive calculations with one fixed choice of lattice size. We identify the critical temperature, and measure interesting physical quantities near the transition. Among them, we determine the free energy of the model in the critical region, exposing for the first time its multi-valued nature with a numerical calculation from first principles, providing this novel evidence in support of a first order phase transition. This study sets the stage for future high precision measurements, by demonstrating the potential of the method.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>108</volume><journalNumber>7</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi>10.1103/physrevd.108.074517</doi><url>http://dx.doi.org/10.1103/physrevd.108.074517</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2024-04-04T12:34:51.6731335</lastEdited><Created>2023-09-22T12:35:29.2164517</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>1</order></author><author><firstname>David</firstname><surname>Mason</surname><orcid>0000-0002-1857-1085</orcid><order>2</order></author><author><firstname>Maurizio</firstname><surname>Piai</surname><orcid>0000-0002-2251-0111</orcid><order>3</order></author><author><firstname>Enrico</firstname><surname>Rinaldi</surname><orcid>0000-0003-4134-809x</orcid><order>4</order></author><author><firstname>Davide</firstname><surname>Vadacchino</surname><orcid>0000-0002-5783-5602</orcid><order>5</order></author><author><firstname>David</firstname><surname>Mason</surname><order>6</order></author></authors><documents><document><filename>64601__28973__1c5e4694d78c4fc884cd017f9deb8b28.pdf</filename><originalFilename>64601.pdf</originalFilename><uploaded>2023-11-08T12:27:52.9880068</uploaded><type>Output</type><contentLength>4927187</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article&#x2019;s title, journal citation, and DOI.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs><OutputDur><Id>211</Id><DataControllerName>Biagio Lucini</DataControllerName><DataControllerOrcid>0000-0001-8974-8266</DataControllerOrcid><DataControllerEmail>b.lucini@swansea.ac.uk</DataControllerEmail><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>DOI:10.5281/zenodo.8124749, DOI:10.5281/zenodo.8134756.</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807>
spelling 2024-04-04T12:34:51.6731335 v2 64601 2023-09-22 First-order phase transitions in Yang-Mills theories and the density of state method 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 3ce295f2c7cc318bac7da18f9989d8c3 0000-0002-2251-0111 Maurizio Piai Maurizio Piai true false 341431eb263f8df9a38d8df4ae3d1cb2 David Mason David Mason true false 2023-09-22 MACS When studied at finite temperature, Yang-Mills theories in 3 + 1 dimensions display the presence of confinement/deconfinement phase transitions, which are known to be of first order—the SU(2) gauge theory being the exception. Theoretical as well as phenomenological considerations indicate that it is essential to establish a precise characterisation of these physical systems in proximity of such phase transitions. We present and test a new method to study the critical region of parameter space in non-Abelian quantum field theories on the lattice, based upon the Logarithmic Linear Relaxation (LLR) algorithm. We apply this method to the SU(3) Yang Mills lattice gauge theory, and perform extensive calculations with one fixed choice of lattice size. We identify the critical temperature, and measure interesting physical quantities near the transition. Among them, we determine the free energy of the model in the critical region, exposing for the first time its multi-valued nature with a numerical calculation from first principles, providing this novel evidence in support of a first order phase transition. This study sets the stage for future high precision measurements, by demonstrating the potential of the method. Journal Article Physical Review D 108 7 American Physical Society (APS) 2470-0010 2470-0029 0 0 0 0001-01-01 10.1103/physrevd.108.074517 http://dx.doi.org/10.1103/physrevd.108.074517 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required 2024-04-04T12:34:51.6731335 2023-09-22T12:35:29.2164517 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Biagio Lucini 0000-0001-8974-8266 1 David Mason 0000-0002-1857-1085 2 Maurizio Piai 0000-0002-2251-0111 3 Enrico Rinaldi 0000-0003-4134-809x 4 Davide Vadacchino 0000-0002-5783-5602 5 David Mason 6 64601__28973__1c5e4694d78c4fc884cd017f9deb8b28.pdf 64601.pdf 2023-11-08T12:27:52.9880068 Output 4927187 application/pdf Version of Record true Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. true eng http://creativecommons.org/licenses/by/4.0/ 211 Biagio Lucini 0000-0001-8974-8266 b.lucini@swansea.ac.uk true DOI:10.5281/zenodo.8124749, DOI:10.5281/zenodo.8134756. false
title First-order phase transitions in Yang-Mills theories and the density of state method
spellingShingle First-order phase transitions in Yang-Mills theories and the density of state method
Biagio Lucini
Maurizio Piai
David Mason
title_short First-order phase transitions in Yang-Mills theories and the density of state method
title_full First-order phase transitions in Yang-Mills theories and the density of state method
title_fullStr First-order phase transitions in Yang-Mills theories and the density of state method
title_full_unstemmed First-order phase transitions in Yang-Mills theories and the density of state method
title_sort First-order phase transitions in Yang-Mills theories and the density of state method
author_id_str_mv 7e6fcfe060e07a351090e2a8aba363cf
3ce295f2c7cc318bac7da18f9989d8c3
341431eb263f8df9a38d8df4ae3d1cb2
author_id_fullname_str_mv 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini
3ce295f2c7cc318bac7da18f9989d8c3_***_Maurizio Piai
341431eb263f8df9a38d8df4ae3d1cb2_***_David Mason
author Biagio Lucini
Maurizio Piai
David Mason
author2 Biagio Lucini
David Mason
Maurizio Piai
Enrico Rinaldi
Davide Vadacchino
David Mason
format Journal article
container_title Physical Review D
container_volume 108
container_issue 7
institution Swansea University
issn 2470-0010
2470-0029
doi_str_mv 10.1103/physrevd.108.074517
publisher American Physical Society (APS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
url http://dx.doi.org/10.1103/physrevd.108.074517
document_store_str 1
active_str 0
description When studied at finite temperature, Yang-Mills theories in 3 + 1 dimensions display the presence of confinement/deconfinement phase transitions, which are known to be of first order—the SU(2) gauge theory being the exception. Theoretical as well as phenomenological considerations indicate that it is essential to establish a precise characterisation of these physical systems in proximity of such phase transitions. We present and test a new method to study the critical region of parameter space in non-Abelian quantum field theories on the lattice, based upon the Logarithmic Linear Relaxation (LLR) algorithm. We apply this method to the SU(3) Yang Mills lattice gauge theory, and perform extensive calculations with one fixed choice of lattice size. We identify the critical temperature, and measure interesting physical quantities near the transition. Among them, we determine the free energy of the model in the critical region, exposing for the first time its multi-valued nature with a numerical calculation from first principles, providing this novel evidence in support of a first order phase transition. This study sets the stage for future high precision measurements, by demonstrating the potential of the method.
published_date 0001-01-01T05:29:23Z
_version_ 1821382136400183296
score 11.3749895