No Cover Image

Journal article 419 views 42 downloads

Heaps of modules and affine spaces

Simion Breaz, Tomasz Brzezinski Orcid Logo, Bernard Rybołowicz, Paolo Saracco Orcid Logo

Annali di Matematica Pura ed Applicata (1923 -), Volume: 203, Issue: 1, Pages: 403 - 445

Swansea University Author: Tomasz Brzezinski Orcid Logo

  • 64523.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License (CC-BY).

    Download (656.13KB)

Abstract

A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presente...

Full description

Published in: Annali di Matematica Pura ed Applicata (1923 -)
ISSN: 0373-3114 1618-1891
Published: Springer Science and Business Media LLC 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa64523
first_indexed 2023-09-13T10:55:00Z
last_indexed 2024-11-25T14:14:11Z
id cronfa64523
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-08-22T11:43:14.9386426</datestamp><bib-version>v2</bib-version><id>64523</id><entry>2023-09-13</entry><title>Heaps of modules and affine spaces</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-09-13</date><deptcode>MACS</deptcode><abstract>A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presented. Relationships between heaps of modules, modules over a ring and affine spaces are revealed and analysed.</abstract><type>Journal Article</type><journal>Annali di Matematica Pura ed Applicata (1923 -)</journal><volume>203</volume><journalNumber>1</journalNumber><paginationStart>403</paginationStart><paginationEnd>445</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0373-3114</issnPrint><issnElectronic>1618-1891</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-02-01</publishedDate><doi>10.1007/s10231-023-01369-0</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>The research of S. Breaz is supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI&#x2013;UEFISCDI, project number PN-III-P4-ID-PCE-2020-0454, within PNCDI III. The research of T. Brzezi&#x144;ski is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115. The research of B. Rybo&#x142;owicz is supported by the EPSRC grant EP/V008129/1. P. Saracco is a Charg&#xE9; de Recherches of the Fonds de la Recherche Scientifique&#x2014;FNRS and a member of the &#x201C;National Group for Algebraic and Geometric Structures and their Applications&#x201D; (GNSAGA-INdAM).</funders><projectreference/><lastEdited>2024-08-22T11:43:14.9386426</lastEdited><Created>2023-09-13T11:43:47.6803640</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Simion</firstname><surname>Breaz</surname><order>1</order></author><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>2</order></author><author><firstname>Bernard</firstname><surname>Rybo&#x142;owicz</surname><order>3</order></author><author><firstname>Paolo</firstname><surname>Saracco</surname><orcid>0000-0001-5693-7722</orcid><order>4</order></author></authors><documents><document><filename>64523__28527__284c885119694a3d8c1ed5bcde3be553.pdf</filename><originalFilename>64523.pdf</originalFilename><uploaded>2023-09-13T11:53:57.4615259</uploaded><type>Output</type><contentLength>671881</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2024-08-22T11:43:14.9386426 v2 64523 2023-09-13 Heaps of modules and affine spaces 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2023-09-13 MACS A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presented. Relationships between heaps of modules, modules over a ring and affine spaces are revealed and analysed. Journal Article Annali di Matematica Pura ed Applicata (1923 -) 203 1 403 445 Springer Science and Business Media LLC 0373-3114 1618-1891 1 2 2024 2024-02-01 10.1007/s10231-023-01369-0 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) The research of S. Breaz is supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PN-III-P4-ID-PCE-2020-0454, within PNCDI III. The research of T. Brzeziński is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115. The research of B. Rybołowicz is supported by the EPSRC grant EP/V008129/1. P. Saracco is a Chargé de Recherches of the Fonds de la Recherche Scientifique—FNRS and a member of the “National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INdAM). 2024-08-22T11:43:14.9386426 2023-09-13T11:43:47.6803640 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Simion Breaz 1 Tomasz Brzezinski 0000-0001-6270-3439 2 Bernard Rybołowicz 3 Paolo Saracco 0000-0001-5693-7722 4 64523__28527__284c885119694a3d8c1ed5bcde3be553.pdf 64523.pdf 2023-09-13T11:53:57.4615259 Output 671881 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Heaps of modules and affine spaces
spellingShingle Heaps of modules and affine spaces
Tomasz Brzezinski
title_short Heaps of modules and affine spaces
title_full Heaps of modules and affine spaces
title_fullStr Heaps of modules and affine spaces
title_full_unstemmed Heaps of modules and affine spaces
title_sort Heaps of modules and affine spaces
author_id_str_mv 30466d840b59627325596fbbb2c82754
author_id_fullname_str_mv 30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski
author Tomasz Brzezinski
author2 Simion Breaz
Tomasz Brzezinski
Bernard Rybołowicz
Paolo Saracco
format Journal article
container_title Annali di Matematica Pura ed Applicata (1923 -)
container_volume 203
container_issue 1
container_start_page 403
publishDate 2024
institution Swansea University
issn 0373-3114
1618-1891
doi_str_mv 10.1007/s10231-023-01369-0
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presented. Relationships between heaps of modules, modules over a ring and affine spaces are revealed and analysed.
published_date 2024-02-01T08:24:41Z
_version_ 1821393164877955072
score 11.04748