Journal article 743 views 58 downloads
Fine-tuning GPT-3 for legal rule classification
Computer Law & Security Review, Volume: 51, Start page: 105864
Swansea University Author: Livio Robaldo
-
PDF | Accepted Manuscript
Distributed under the terms of a Creative Commons CC-BY-NC-ND licence.
Download (2.76MB)
DOI (Published version): 10.1016/j.clsr.2023.105864
Abstract
In this paper, we propose a Legal Rule Classification (LRC) task using one of the most discussed language model in the field of Artificial Intelligence, namely GPT-3, a generative pretrained language model. We train and test the proposed LRC task on the GDPR encoded in LegalDocML (Palmirani and Vita...
Published in: | Computer Law & Security Review |
---|---|
ISSN: | 0267-3649 |
Published: |
Elsevier BV
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa64410 |
first_indexed |
2023-09-04T20:00:43Z |
---|---|
last_indexed |
2024-11-25T14:13:59Z |
id |
cronfa64410 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-09-05T13:46:29.8152915</datestamp><bib-version>v2</bib-version><id>64410</id><entry>2023-09-04</entry><title>Fine-tuning GPT-3 for legal rule classification</title><swanseaauthors><author><sid>b711cf9f3a7821ec52bd1e53b4f6cf9e</sid><ORCID>0000-0003-4713-8990</ORCID><firstname>Livio</firstname><surname>Robaldo</surname><name>Livio Robaldo</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-09-04</date><deptcode>HRCL</deptcode><abstract>In this paper, we propose a Legal Rule Classification (LRC) task using one of the most discussed language model in the field of Artificial Intelligence, namely GPT-3, a generative pretrained language model. We train and test the proposed LRC task on the GDPR encoded in LegalDocML (Palmirani and Vitali, 2011) and LegalRuleML (Athan et al., 2013), two widely used XML standards for the legal domain. We use the LegalDocML and LegalRuleML annotations provided in Robaldo et al. (2020) to fine-tuned GPT-3. While showing the ability of large language models (LLMs) to easily learn to classify legal and deontic rules even on small amount of data, we show that GPT-3 can significantly outperform previous experiments on the same task. Our work focused on a multiclass task, showing that GPT-3 is capable to recognize the difference between obligation rules, permission rules and constitutive rules with performances that overcome previous scores in LRC.</abstract><type>Journal Article</type><journal>Computer Law & Security Review</journal><volume>51</volume><journalNumber/><paginationStart>105864</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0267-3649</issnPrint><issnElectronic/><keywords>Rule classification, GPT-3, AI&amp;Law</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-11-01</publishedDate><doi>10.1016/j.clsr.2023.105864</doi><url>http://dx.doi.org/10.1016/j.clsr.2023.105864</url><notes/><college>COLLEGE NANME</college><department>Hillary Rodham Clinton Law School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HRCL</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-09-05T13:46:29.8152915</lastEdited><Created>2023-09-04T20:56:38.4664101</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">Hilary Rodham Clinton School of Law</level></path><authors><author><firstname>Davide</firstname><surname>Liga</surname><orcid>0000-0003-1124-0299</orcid><order>1</order></author><author><firstname>Livio</firstname><surname>Robaldo</surname><orcid>0000-0003-4713-8990</orcid><order>2</order></author></authors><documents><document><filename>64410__28795__5325de6920c3470ab23be2a97b1077c0.pdf</filename><originalFilename>64410.AAM.pdf</originalFilename><uploaded>2023-10-16T14:18:02.6449075</uploaded><type>Output</type><contentLength>2893350</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2024-09-04T00:00:00.0000000</embargoDate><documentNotes>Distributed under the terms of a Creative Commons CC-BY-NC-ND licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://doi.org/10.1016/j.clsr.2023.105864</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-09-05T13:46:29.8152915 v2 64410 2023-09-04 Fine-tuning GPT-3 for legal rule classification b711cf9f3a7821ec52bd1e53b4f6cf9e 0000-0003-4713-8990 Livio Robaldo Livio Robaldo true false 2023-09-04 HRCL In this paper, we propose a Legal Rule Classification (LRC) task using one of the most discussed language model in the field of Artificial Intelligence, namely GPT-3, a generative pretrained language model. We train and test the proposed LRC task on the GDPR encoded in LegalDocML (Palmirani and Vitali, 2011) and LegalRuleML (Athan et al., 2013), two widely used XML standards for the legal domain. We use the LegalDocML and LegalRuleML annotations provided in Robaldo et al. (2020) to fine-tuned GPT-3. While showing the ability of large language models (LLMs) to easily learn to classify legal and deontic rules even on small amount of data, we show that GPT-3 can significantly outperform previous experiments on the same task. Our work focused on a multiclass task, showing that GPT-3 is capable to recognize the difference between obligation rules, permission rules and constitutive rules with performances that overcome previous scores in LRC. Journal Article Computer Law & Security Review 51 105864 Elsevier BV 0267-3649 Rule classification, GPT-3, AI&Law 1 11 2023 2023-11-01 10.1016/j.clsr.2023.105864 http://dx.doi.org/10.1016/j.clsr.2023.105864 COLLEGE NANME Hillary Rodham Clinton Law School COLLEGE CODE HRCL Swansea University 2024-09-05T13:46:29.8152915 2023-09-04T20:56:38.4664101 Faculty of Humanities and Social Sciences Hilary Rodham Clinton School of Law Davide Liga 0000-0003-1124-0299 1 Livio Robaldo 0000-0003-4713-8990 2 64410__28795__5325de6920c3470ab23be2a97b1077c0.pdf 64410.AAM.pdf 2023-10-16T14:18:02.6449075 Output 2893350 application/pdf Accepted Manuscript true 2024-09-04T00:00:00.0000000 Distributed under the terms of a Creative Commons CC-BY-NC-ND licence. true eng https://doi.org/10.1016/j.clsr.2023.105864 |
title |
Fine-tuning GPT-3 for legal rule classification |
spellingShingle |
Fine-tuning GPT-3 for legal rule classification Livio Robaldo |
title_short |
Fine-tuning GPT-3 for legal rule classification |
title_full |
Fine-tuning GPT-3 for legal rule classification |
title_fullStr |
Fine-tuning GPT-3 for legal rule classification |
title_full_unstemmed |
Fine-tuning GPT-3 for legal rule classification |
title_sort |
Fine-tuning GPT-3 for legal rule classification |
author_id_str_mv |
b711cf9f3a7821ec52bd1e53b4f6cf9e |
author_id_fullname_str_mv |
b711cf9f3a7821ec52bd1e53b4f6cf9e_***_Livio Robaldo |
author |
Livio Robaldo |
author2 |
Davide Liga Livio Robaldo |
format |
Journal article |
container_title |
Computer Law & Security Review |
container_volume |
51 |
container_start_page |
105864 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0267-3649 |
doi_str_mv |
10.1016/j.clsr.2023.105864 |
publisher |
Elsevier BV |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
Hilary Rodham Clinton School of Law{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}Hilary Rodham Clinton School of Law |
url |
http://dx.doi.org/10.1016/j.clsr.2023.105864 |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we propose a Legal Rule Classification (LRC) task using one of the most discussed language model in the field of Artificial Intelligence, namely GPT-3, a generative pretrained language model. We train and test the proposed LRC task on the GDPR encoded in LegalDocML (Palmirani and Vitali, 2011) and LegalRuleML (Athan et al., 2013), two widely used XML standards for the legal domain. We use the LegalDocML and LegalRuleML annotations provided in Robaldo et al. (2020) to fine-tuned GPT-3. While showing the ability of large language models (LLMs) to easily learn to classify legal and deontic rules even on small amount of data, we show that GPT-3 can significantly outperform previous experiments on the same task. Our work focused on a multiclass task, showing that GPT-3 is capable to recognize the difference between obligation rules, permission rules and constitutive rules with performances that overcome previous scores in LRC. |
published_date |
2023-11-01T14:33:32Z |
_version_ |
1821416371524730880 |
score |
11.247077 |