No Cover Image

Journal article 223 views 37 downloads

Molecular Characterization and Sterol Profiles Identify Nonsynonymous Mutations in ERG2 as a Major Mechanism Conferring Reduced Susceptibility to Amphotericin B in Candida kefyr

Mohammad Asadzadeh, Wadha Alfouzan, Josie E. Parker, Jacques F. Meis Orcid Logo, Steven Kelly Orcid Logo, Leena Joseph, Suhail Ahmad Orcid Logo

Microbiology Spectrum, Volume: 11, Issue: 4

Swansea University Author: Steven Kelly Orcid Logo

  • 64121.VOR.pdf

    PDF | Version of Record

    Upon publication, the work becomes available to the public under a Creative Commons CC BY 4.0 license. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of open access articles with attribution.

    Download (311.28KB)

Abstract

The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 pa...

Full description

Published in: Microbiology Spectrum
ISSN: 2165-0497
Published: American Society for Microbiology 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa64121
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 patients in Kuwait and identified by phenotypic and molecular methods were analyzed. An Etest was initially used to identify isolates with rs-AMB. Specific mutations in ERG2 and ERG6 involved in ergosterol biosynthesis were detected by PCR sequencing. Twelve selected isolates were also tested by the SensiTitre Yeast One (SYO), and total cell sterols were evaluated by gas chromatography-mass spectrometry and ERG3 and ERG11 sequencing. Eight isolates from 8 patients showed rs-AMB by Etest, including 2 isolates with additional resistance to fluconazole or to all three antifungals. SYO correctly identified 8 of 8 rs-AMB isolates. A nonsynonymous mutation in ERG2 was detected in 6 of 8 rs-AMB isolates but also in 3 of 73 isolates with a wild-type AMB pattern. One rs-AMB isolate contained a deletion (frameshift) mutation in ERG2. One or more nonsynonymous mutations was detected in ERG6 in 11 of 81 isolates with the rs-AMB or wild-type AMB pattern. Among 12 selected isolates, 2 and 2 isolates contained a nonsynonymous mutation(s) in ERG3 and ERG11, respectively. Ergosterol was undetectable in 7 of 8 rs-AMB isolates, and the total cell sterol profiles were consistent with loss of ERG2 function in 6 rs-AMB isolates and loss of ERG3 activity in another rs-AMB isolate. Our data showed that ERG2 is a major target conferring rs-AMB in clinical C. kefyr isolates.
Keywords: Candida kefyr, ERG2, nonsynonymous mutations, reduced susceptibility, amphotericin B
College: Faculty of Medicine, Health and Life Sciences
Funders: This study was supported and funded by Kuwait University Research Sector grant MI 02/20.
Issue: 4