Journal article 437 views 79 downloads
Reversible spin-optical interface in luminescent organic radicals
Nature, Volume: 620, Issue: 7974, Pages: 538 - 544
Swansea University Author: Emrys Evans
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Download (7.06MB)
DOI (Published version): 10.1038/s41586-023-06222-1
Abstract
Molecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents opti...
Published in: | Nature |
---|---|
ISSN: | 0028-0836 1476-4687 |
Published: |
Springer Science and Business Media LLC
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63993 |
first_indexed |
2023-08-16T22:07:20Z |
---|---|
last_indexed |
2024-11-25T14:13:14Z |
id |
cronfa63993 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-09-07T13:28:26.5009684</datestamp><bib-version>v2</bib-version><id>63993</id><entry>2023-07-28</entry><title>Reversible spin-optical interface in luminescent organic radicals</title><swanseaauthors><author><sid>538e217307dac24c9642ef1b03b41485</sid><ORCID>0000-0002-9092-3938</ORCID><firstname>Emrys</firstname><surname>Evans</surname><name>Emrys Evans</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-07-28</date><deptcode>EAAS</deptcode><abstract>Molecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical–triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.</abstract><type>Journal Article</type><journal>Nature</journal><volume>620</volume><journalNumber>7974</journalNumber><paginationStart>538</paginationStart><paginationEnd>544</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0028-0836</issnPrint><issnElectronic>1476-4687</issnElectronic><keywords>Chemical physics, excited states, molecular electronics, quantum physics</keywords><publishedDay>17</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-08-17</publishedDate><doi>10.1038/s41586-023-06222-1</doi><url>http://dx.doi.org/10.1038/s41586-023-06222-1</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>European Research Council, European Union’s Horizon 2020 research and innovation programme grant agreement no. 101020167, Engineering and Physical Sciences Research Council (EPSRC) Cambridge NanoDTC, no. EP/S022953/1, Simons Foundation, grant no. 601946, Royal Society, University Research Fellowship, grant no. URF\R1\201300, Leverhulme Trust Early Career Fellowship, grant no. ECF-2019-054, EPSRC grant no. EP/W018519/1, National Natural Science Foundation of China, grant no. 51925303, Deutsche Forschungsgemeinschaft, Research Training School ‘Molecular biradicals: Structure, properties and reactivity’ (no. GRK2112), Bavarian Ministry of the Environment and Consumer Protection, the Bavarian Network ‘Solar Technologies Go Hybrid’, John Fell OUP Research Fund, grant no. 0007019, EPSRC, grant nos. EP/V036408/1 and EP/L011972/1, Department of Chemistry, University of Oxford, Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS), grant no. 2.5020.11, Walloon Region, grant no. 1117545, Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture of the F.R.S.-F.N.R.S., Fonds de la Recherche Scientifique-FNRS, grant no. F.4534.21 (MIS-IMAGINE), Ministerio de Ciencia e Innovación of Spain, project no. PID2019-109555GB-I00, and Eusko Jaurlaritza/Basque Government, project nos. PIBA19-0004 and 2019-CIEN-000092-01, Consortium des Équipements de Calcul Intensif and the Tier-1 supercomputer of Fedération Wallonie-Bruxelles, FNRS, Donostia International Physics Centre and Gipuzkoa’s council joint programme Women and Science, DIPC Computer Centre.</funders><projectreference/><lastEdited>2023-09-07T13:28:26.5009684</lastEdited><Created>2023-07-28T10:20:57.4232260</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Sebastian</firstname><surname>Gorgon</surname><orcid>0000-0002-1361-1973</orcid><order>1</order></author><author><firstname>Kuo</firstname><surname>Lv</surname><order>2</order></author><author><firstname>Jeannine</firstname><surname>Grüne</surname><order>3</order></author><author><firstname>Bluebell H.</firstname><surname>Drummond</surname><orcid>0000-0001-5940-8631</orcid><order>4</order></author><author><firstname>William K.</firstname><surname>Myers</surname><orcid>0000-0001-5935-9112</orcid><order>5</order></author><author><firstname>Giacomo</firstname><surname>Londi</surname><order>6</order></author><author><firstname>Gaetano</firstname><surname>Ricci</surname><order>7</order></author><author><firstname>Danillo</firstname><surname>Valverde</surname><order>8</order></author><author><firstname>Claire</firstname><surname>Tonnelé</surname><orcid>0000-0003-0791-8239</orcid><order>9</order></author><author><firstname>Petri</firstname><surname>Murto</surname><orcid>0000-0001-7618-000x</orcid><order>10</order></author><author><firstname>Alexander S.</firstname><surname>Romanov</surname><order>11</order></author><author><firstname>David</firstname><surname>Casanova</surname><orcid>0000-0002-8893-7089</orcid><order>12</order></author><author><firstname>Vladimir</firstname><surname>Dyakonov</surname><order>13</order></author><author><firstname>Andreas</firstname><surname>Sperlich</surname><orcid>0000-0002-0850-6757</orcid><order>14</order></author><author><firstname>David</firstname><surname>Beljonne</surname><orcid>0000-0001-5082-9990</orcid><order>15</order></author><author><firstname>Yoann</firstname><surname>Olivier</surname><order>16</order></author><author><firstname>Feng</firstname><surname>Li</surname><orcid>0000-0001-5236-3709</orcid><order>17</order></author><author><firstname>Richard H.</firstname><surname>Friend</surname><orcid>0000-0001-6565-6308</orcid><order>18</order></author><author><firstname>Emrys</firstname><surname>Evans</surname><orcid>0000-0002-9092-3938</orcid><order>19</order></author></authors><documents><document><filename>63993__28304__60d38adbbafd40848a82617c87f0f0db.pdf</filename><originalFilename>s41586-023-06222-1.pdf</originalFilename><uploaded>2023-08-16T23:04:00.5750944</uploaded><type>Output</type><contentLength>7401860</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-09-07T13:28:26.5009684 v2 63993 2023-07-28 Reversible spin-optical interface in luminescent organic radicals 538e217307dac24c9642ef1b03b41485 0000-0002-9092-3938 Emrys Evans Emrys Evans true false 2023-07-28 EAAS Molecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical–triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies. Journal Article Nature 620 7974 538 544 Springer Science and Business Media LLC 0028-0836 1476-4687 Chemical physics, excited states, molecular electronics, quantum physics 17 8 2023 2023-08-17 10.1038/s41586-023-06222-1 http://dx.doi.org/10.1038/s41586-023-06222-1 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University SU Library paid the OA fee (TA Institutional Deal) European Research Council, European Union’s Horizon 2020 research and innovation programme grant agreement no. 101020167, Engineering and Physical Sciences Research Council (EPSRC) Cambridge NanoDTC, no. EP/S022953/1, Simons Foundation, grant no. 601946, Royal Society, University Research Fellowship, grant no. URF\R1\201300, Leverhulme Trust Early Career Fellowship, grant no. ECF-2019-054, EPSRC grant no. EP/W018519/1, National Natural Science Foundation of China, grant no. 51925303, Deutsche Forschungsgemeinschaft, Research Training School ‘Molecular biradicals: Structure, properties and reactivity’ (no. GRK2112), Bavarian Ministry of the Environment and Consumer Protection, the Bavarian Network ‘Solar Technologies Go Hybrid’, John Fell OUP Research Fund, grant no. 0007019, EPSRC, grant nos. EP/V036408/1 and EP/L011972/1, Department of Chemistry, University of Oxford, Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS), grant no. 2.5020.11, Walloon Region, grant no. 1117545, Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture of the F.R.S.-F.N.R.S., Fonds de la Recherche Scientifique-FNRS, grant no. F.4534.21 (MIS-IMAGINE), Ministerio de Ciencia e Innovación of Spain, project no. PID2019-109555GB-I00, and Eusko Jaurlaritza/Basque Government, project nos. PIBA19-0004 and 2019-CIEN-000092-01, Consortium des Équipements de Calcul Intensif and the Tier-1 supercomputer of Fedération Wallonie-Bruxelles, FNRS, Donostia International Physics Centre and Gipuzkoa’s council joint programme Women and Science, DIPC Computer Centre. 2023-09-07T13:28:26.5009684 2023-07-28T10:20:57.4232260 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Sebastian Gorgon 0000-0002-1361-1973 1 Kuo Lv 2 Jeannine Grüne 3 Bluebell H. Drummond 0000-0001-5940-8631 4 William K. Myers 0000-0001-5935-9112 5 Giacomo Londi 6 Gaetano Ricci 7 Danillo Valverde 8 Claire Tonnelé 0000-0003-0791-8239 9 Petri Murto 0000-0001-7618-000x 10 Alexander S. Romanov 11 David Casanova 0000-0002-8893-7089 12 Vladimir Dyakonov 13 Andreas Sperlich 0000-0002-0850-6757 14 David Beljonne 0000-0001-5082-9990 15 Yoann Olivier 16 Feng Li 0000-0001-5236-3709 17 Richard H. Friend 0000-0001-6565-6308 18 Emrys Evans 0000-0002-9092-3938 19 63993__28304__60d38adbbafd40848a82617c87f0f0db.pdf s41586-023-06222-1.pdf 2023-08-16T23:04:00.5750944 Output 7401860 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Reversible spin-optical interface in luminescent organic radicals |
spellingShingle |
Reversible spin-optical interface in luminescent organic radicals Emrys Evans |
title_short |
Reversible spin-optical interface in luminescent organic radicals |
title_full |
Reversible spin-optical interface in luminescent organic radicals |
title_fullStr |
Reversible spin-optical interface in luminescent organic radicals |
title_full_unstemmed |
Reversible spin-optical interface in luminescent organic radicals |
title_sort |
Reversible spin-optical interface in luminescent organic radicals |
author_id_str_mv |
538e217307dac24c9642ef1b03b41485 |
author_id_fullname_str_mv |
538e217307dac24c9642ef1b03b41485_***_Emrys Evans |
author |
Emrys Evans |
author2 |
Sebastian Gorgon Kuo Lv Jeannine Grüne Bluebell H. Drummond William K. Myers Giacomo Londi Gaetano Ricci Danillo Valverde Claire Tonnelé Petri Murto Alexander S. Romanov David Casanova Vladimir Dyakonov Andreas Sperlich David Beljonne Yoann Olivier Feng Li Richard H. Friend Emrys Evans |
format |
Journal article |
container_title |
Nature |
container_volume |
620 |
container_issue |
7974 |
container_start_page |
538 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0028-0836 1476-4687 |
doi_str_mv |
10.1038/s41586-023-06222-1 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry |
url |
http://dx.doi.org/10.1038/s41586-023-06222-1 |
document_store_str |
1 |
active_str |
0 |
description |
Molecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical–triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies. |
published_date |
2023-08-17T20:36:30Z |
_version_ |
1821439206779518976 |
score |
11.047609 |