Journal article 1030 views 125 downloads
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage
International Journal of Population Data Science, Volume: 1, Issue: 1
Swansea University Authors:
Anne Seagrove, Helen Snooks , Nigel Rees
, Martin Heaven
-
PDF | Version of Record
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Download (223.43KB)
DOI (Published version): 10.23889/ijpds.v1i1.347
Abstract
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage
| Published in: | International Journal of Population Data Science |
|---|---|
| ISSN: | 2399-4908 |
| Published: |
Swansea University
2022
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa63471 |
| first_indexed |
2023-05-19T09:45:27Z |
|---|---|
| last_indexed |
2024-11-15T18:01:39Z |
| id |
cronfa63471 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-05-30T14:22:03.4814103</datestamp><bib-version>v2</bib-version><id>63471</id><entry>2023-05-16</entry><title>Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage</title><swanseaauthors><author><sid>33ab56cb67d7b1ef58f0280af1744e0d</sid><ORCID/><firstname>Anne</firstname><surname>Seagrove</surname><name>Anne Seagrove</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ab23c5e0111b88427a155a1f495861d9</sid><ORCID>0000-0003-0173-8843</ORCID><firstname>Helen</firstname><surname>Snooks</surname><name>Helen Snooks</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>8c440a0df599a0b6eef3927ebd515b72</sid><ORCID>0000-0001-8799-5335</ORCID><firstname>Nigel</firstname><surname>Rees</surname><name>Nigel Rees</name><active>true</active><ethesisStudent>true</ethesisStudent></author><author><sid>8cf2eadb1a9a0b58dfe45644838545d5</sid><firstname>Martin</firstname><surname>Heaven</surname><name>Martin Heaven</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-05-16</date><abstract/><type>Journal Article</type><journal>International Journal of Population Data Science</journal><volume>1</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-01</publishedDate><doi>10.23889/ijpds.v1i1.347</doi><url>http://dx.doi.org/10.23889/ijpds.v1i1.347</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-05-30T14:22:03.4814103</lastEdited><Created>2023-05-16T13:29:57.7928172</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Health Data Science</level></path><authors><author><firstname>Anne</firstname><surname>Seagrove</surname><orcid/><order>1</order></author><author><firstname>Jenna</firstname><surname>Bulger</surname><order>2</order></author><author><firstname>Helen</firstname><surname>Snooks</surname><orcid>0000-0003-0173-8843</orcid><order>3</order></author><author><firstname>Nigel</firstname><surname>Rees</surname><orcid>0000-0001-8799-5335</orcid><order>4</order></author><author><firstname>Martin</firstname><surname>Heaven</surname><order>5</order></author></authors><documents><document><filename>63471__27537__ea5541956c464ecb923d20793058626f.pdf</filename><originalFilename>63471.pdf</originalFilename><uploaded>2023-05-19T10:44:26.3468184</uploaded><type>Output</type><contentLength>228790</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2023-05-30T14:22:03.4814103 v2 63471 2023-05-16 Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage 33ab56cb67d7b1ef58f0280af1744e0d Anne Seagrove Anne Seagrove true false ab23c5e0111b88427a155a1f495861d9 0000-0003-0173-8843 Helen Snooks Helen Snooks true false 8c440a0df599a0b6eef3927ebd515b72 0000-0001-8799-5335 Nigel Rees Nigel Rees true true 8cf2eadb1a9a0b58dfe45644838545d5 Martin Heaven Martin Heaven true false 2023-05-16 Journal Article International Journal of Population Data Science 1 1 Swansea University 2399-4908 1 8 2022 2022-08-01 10.23889/ijpds.v1i1.347 http://dx.doi.org/10.23889/ijpds.v1i1.347 COLLEGE NANME COLLEGE CODE Swansea University 2023-05-30T14:22:03.4814103 2023-05-16T13:29:57.7928172 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Health Data Science Anne Seagrove 1 Jenna Bulger 2 Helen Snooks 0000-0003-0173-8843 3 Nigel Rees 0000-0001-8799-5335 4 Martin Heaven 5 63471__27537__ea5541956c464ecb923d20793058626f.pdf 63471.pdf 2023-05-19T10:44:26.3468184 Output 228790 application/pdf Version of Record true This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| title |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage |
| spellingShingle |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage Anne Seagrove Helen Snooks Nigel Rees Martin Heaven |
| title_short |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage |
| title_full |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage |
| title_fullStr |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage |
| title_full_unstemmed |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage |
| title_sort |
Transient Ischaemic Attack 999 Emergency Referral (TIER): a cluster randomised feasibility trial facilitated by data linkage |
| author_id_str_mv |
33ab56cb67d7b1ef58f0280af1744e0d ab23c5e0111b88427a155a1f495861d9 8c440a0df599a0b6eef3927ebd515b72 8cf2eadb1a9a0b58dfe45644838545d5 |
| author_id_fullname_str_mv |
33ab56cb67d7b1ef58f0280af1744e0d_***_Anne Seagrove ab23c5e0111b88427a155a1f495861d9_***_Helen Snooks 8c440a0df599a0b6eef3927ebd515b72_***_Nigel Rees 8cf2eadb1a9a0b58dfe45644838545d5_***_Martin Heaven |
| author |
Anne Seagrove Helen Snooks Nigel Rees Martin Heaven |
| author2 |
Anne Seagrove Jenna Bulger Helen Snooks Nigel Rees Martin Heaven |
| format |
Journal article |
| container_title |
International Journal of Population Data Science |
| container_volume |
1 |
| container_issue |
1 |
| publishDate |
2022 |
| institution |
Swansea University |
| issn |
2399-4908 |
| doi_str_mv |
10.23889/ijpds.v1i1.347 |
| publisher |
Swansea University |
| college_str |
Faculty of Medicine, Health and Life Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
| hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
| hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
| hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
| department_str |
Swansea University Medical School - Health Data Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Health Data Science |
| url |
http://dx.doi.org/10.23889/ijpds.v1i1.347 |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2022-08-01T05:12:50Z |
| _version_ |
1851096899786899456 |
| score |
11.444314 |

