No Cover Image

Journal article 486 views 89 downloads

Combination of cobalt, chromium and titanium nanoparticles increases cytotoxicity in vitro and pro-inflammatory cytokines in vivo

Zhao Liu Orcid Logo, Hui Liu, Rachel Vowden, Louise Hughes Orcid Logo, Dahu Qi, Wendy Francis Orcid Logo, Giorgio Perino, Ryan Pink Orcid Logo, Jun Xiao, Bin Li, Zhidao Xia Orcid Logo

Journal of Orthopaedic Translation, Volume: 38, Pages: 203 - 212

Swansea University Authors: Wendy Francis Orcid Logo, Zhidao Xia Orcid Logo

  • 63234.pdf

    PDF | Version of Record

    2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Download (2.91MB)

Abstract

BackgroundThe mixture of different metallic nanoparticles released from intended and unintended wearing of orthopaedic implants such as the Co/Cr cup and head, Co/Cr sleeves or tapers and their interface with Ti stems in the case of hip prostheses are a leading cause of adverse inflammatory response...

Full description

Published in: Journal of Orthopaedic Translation
ISSN: 2214-031X
Published: Elsevier BV 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa63234
Abstract: BackgroundThe mixture of different metallic nanoparticles released from intended and unintended wearing of orthopaedic implants such as the Co/Cr cup and head, Co/Cr sleeves or tapers and their interface with Ti stems in the case of hip prostheses are a leading cause of adverse inflammatory responses and cytotoxicity to the host.MethodsThis study assessed the in vitro cytotoxic effects of three metallic nanoparticles (Co, Cr and Ti) separately and in combination on macrophages. The in vivo effects were also evaluated after peri-tibial soft tissue injection in mice.ResultsThe results demonstrated that Co, Cr, and Ti nanoparticles and their combination were phagocytosed by macrophages both in vitro and in vivo. High doses of nanoparticles from each individual metal caused a variable rate of cell death in vitro. However, the mixture of Co/Cr/Ti nanoparticles was more toxic than the Co, Cr or Ti metals alone at low doses. Intracellular distribution of Co, Cr, and Ti in the combined group was heterogeneous and associated with distinct morphological features. The results from in vivo experiments showed a significant increase in the mRNA levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α in peri-tibial soft tissue following the administration of Co alone as well as the combination of nanoparticles.ConclusionThis study demonstrated that the combination of Co/Cr/Ti nanoparticles was more cytotoxic than any of the individual metals in vitro and induced higher expression of genes encoding pro-inflammatory cytokines than single metals in vivo. The in vivo model utilised in this study might provide a useful tool for rapid assessment of the effects of unintended release of metal nanoparticles from implants in pre-/post-marketing studies.Translational potential of this articleThis study highlights the importance of preclinical assessments of potential nanoparticles produced by wear and tear of metal implants using macrophages and animal models, in particular their combinational toxicity in addition to the assessments of the bulk metallic materials.
Keywords: Metal nanoparticles, Macrophages, Cytotoxicity, Pro-inflammatory cytokines
College: Faculty of Medicine, Health and Life Sciences
Funders: We would like to acknowledge the Thackray Medical Research Trust for financial support of a MSc studentship of this project and Christopher von Ruhland, PhD for samples preparation for TEM/SEM analysis.
Start Page: 203
End Page: 212