Journal article 440 views 32 downloads
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products
ChemElectroChem, Volume: 10, Issue: 14
Swansea University Authors: Eleri Worsley, Sajad Kiani , Thomas Fone, Christopher Phillips , Davide Deganello
-
PDF | Version of Record
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Download (2.84MB)
DOI (Published version): 10.1002/celc.202300210
Abstract
Manganese(III/IV) oxide is a promising pseudocapacitive material for supercapacitor electrodes due to favorable attributes such as its chemical resilience, high earth abundance and low specific cost. Herein, the morphological, compositional and electrochemical characteristics of co-precipitated mang...
Published in: | ChemElectroChem |
---|---|
ISSN: | 2196-0216 2196-0216 |
Published: |
Wiley
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63191 |
first_indexed |
2023-04-18T14:33:07Z |
---|---|
last_indexed |
2024-11-15T18:01:06Z |
id |
cronfa63191 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-09-04T13:19:58.6174988</datestamp><bib-version>v2</bib-version><id>63191</id><entry>2023-04-18</entry><title>Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products</title><swanseaauthors><author><sid>8484ab36e02699f52d48bbfe36b7ac74</sid><firstname>Eleri</firstname><surname>Worsley</surname><name>Eleri Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>fe9ec46699e095368faf2a0465b598c5</sid><ORCID>0000-0003-1609-6855</ORCID><firstname>Sajad</firstname><surname>Kiani</surname><name>Sajad Kiani</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dc60933e11ebcdd7a7fa2be4b12a3b53</sid><firstname>Thomas</firstname><surname>Fone</surname><name>Thomas Fone</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cc734f776f10b3fb9b43816c9f617bb5</sid><ORCID>0000-0001-8011-710X</ORCID><firstname>Christopher</firstname><surname>Phillips</surname><name>Christopher Phillips</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ea38a0040bdfd3875506189e3629b32a</sid><ORCID>0000-0001-8341-4177</ORCID><firstname>Davide</firstname><surname>Deganello</surname><name>Davide Deganello</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-04-18</date><abstract>Manganese(III/IV) oxide is a promising pseudocapacitive material for supercapacitor electrodes due to favorable attributes such as its chemical resilience, high earth abundance and low specific cost. Herein, the morphological, compositional and electrochemical characteristics of co-precipitated manganese(III/IV) oxide products, each described by the general formula NaxKyMnOz, are investigated to establish how these properties are influenced by synthesis conditions. NaxKyMnOz growths in low-temperature (<100 °C) basic and acidic environments are shown to promote the formation of turbostratic birnessite and cryptomelane phases, respectively, with the latter polymorph containing a relatively low concentration of interstitial Na+ and K+ cations. It is demonstrated that K+ pre-insertion during synthesis yields lower initial charge-transfer resistances than equivalent Na+ intercalation, and that this parameter correlates strongly with storage performance. Accordingly, Na-mediated storage initially delivers inferior specific capacitances and Coulombic efficiencies than K-based mechanisms, but K+ intercalation/deintercalation causes faster capacitance decay during prolonged galvanostatic cycling. Furthermore, whilst crystallographic phase is shown to have a weaker effect on NaxKyMnOz storage properties than the choice of intercalating guest cations, cryptomelane electrodes are more susceptible to cycling-induced capacitance and efficiency losses than their birnessite counterparts. In combination, these insights provide an instructive foundation for the optimization of NaxKyMnOz in high-power storage applications.</abstract><type>Journal Article</type><journal>ChemElectroChem</journal><volume>10</volume><journalNumber>14</journalNumber><paginationStart/><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2196-0216</issnPrint><issnElectronic>2196-0216</issnElectronic><keywords>Birnessite Cryptomelane, Intercalation, MnO2, Pseudocapacitance</keywords><publishedDay>17</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-07-17</publishedDate><doi>10.1002/celc.202300210</doi><url>http://dx.doi.org/10.1002/celc.202300210</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Enserv Power Co. Ltd., Welsh Government, Swansea University, EPSRC. Grant Number: EP/M028267/1, Welsh Government. Grant Number: 80708</funders><projectreference/><lastEdited>2023-09-04T13:19:58.6174988</lastEdited><Created>2023-04-18T15:07:11.9562890</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Daniel R.</firstname><surname>Jones</surname><orcid>0000-0002-4889-9153</orcid><order>1</order></author><author><firstname>Haytham E. M.</firstname><surname>Hussein</surname><order>2</order></author><author><firstname>Eleri</firstname><surname>Worsley</surname><order>3</order></author><author><firstname>Sajad</firstname><surname>Kiani</surname><orcid>0000-0003-1609-6855</orcid><order>4</order></author><author><firstname>Kittiwat</firstname><surname>Kamlungsua</surname><order>5</order></author><author><firstname>Thomas</firstname><surname>Fone</surname><order>6</order></author><author><firstname>Christopher</firstname><surname>Phillips</surname><orcid>0000-0001-8011-710X</orcid><order>7</order></author><author><firstname>Davide</firstname><surname>Deganello</surname><orcid>0000-0001-8341-4177</orcid><order>8</order></author></authors><documents><document><filename>63191__28439__247aa65656d141fc8b7251b1c27dac7d.pdf</filename><originalFilename>63191.VOR.pdf</originalFilename><uploaded>2023-09-04T13:18:35.3470366</uploaded><type>Output</type><contentLength>2976002</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-09-04T13:19:58.6174988 v2 63191 2023-04-18 Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products 8484ab36e02699f52d48bbfe36b7ac74 Eleri Worsley Eleri Worsley true false fe9ec46699e095368faf2a0465b598c5 0000-0003-1609-6855 Sajad Kiani Sajad Kiani true false dc60933e11ebcdd7a7fa2be4b12a3b53 Thomas Fone Thomas Fone true false cc734f776f10b3fb9b43816c9f617bb5 0000-0001-8011-710X Christopher Phillips Christopher Phillips true false ea38a0040bdfd3875506189e3629b32a 0000-0001-8341-4177 Davide Deganello Davide Deganello true false 2023-04-18 Manganese(III/IV) oxide is a promising pseudocapacitive material for supercapacitor electrodes due to favorable attributes such as its chemical resilience, high earth abundance and low specific cost. Herein, the morphological, compositional and electrochemical characteristics of co-precipitated manganese(III/IV) oxide products, each described by the general formula NaxKyMnOz, are investigated to establish how these properties are influenced by synthesis conditions. NaxKyMnOz growths in low-temperature (<100 °C) basic and acidic environments are shown to promote the formation of turbostratic birnessite and cryptomelane phases, respectively, with the latter polymorph containing a relatively low concentration of interstitial Na+ and K+ cations. It is demonstrated that K+ pre-insertion during synthesis yields lower initial charge-transfer resistances than equivalent Na+ intercalation, and that this parameter correlates strongly with storage performance. Accordingly, Na-mediated storage initially delivers inferior specific capacitances and Coulombic efficiencies than K-based mechanisms, but K+ intercalation/deintercalation causes faster capacitance decay during prolonged galvanostatic cycling. Furthermore, whilst crystallographic phase is shown to have a weaker effect on NaxKyMnOz storage properties than the choice of intercalating guest cations, cryptomelane electrodes are more susceptible to cycling-induced capacitance and efficiency losses than their birnessite counterparts. In combination, these insights provide an instructive foundation for the optimization of NaxKyMnOz in high-power storage applications. Journal Article ChemElectroChem 10 14 Wiley 2196-0216 2196-0216 Birnessite Cryptomelane, Intercalation, MnO2, Pseudocapacitance 17 7 2023 2023-07-17 10.1002/celc.202300210 http://dx.doi.org/10.1002/celc.202300210 COLLEGE NANME COLLEGE CODE Swansea University SU Library paid the OA fee (TA Institutional Deal) Enserv Power Co. Ltd., Welsh Government, Swansea University, EPSRC. Grant Number: EP/M028267/1, Welsh Government. Grant Number: 80708 2023-09-04T13:19:58.6174988 2023-04-18T15:07:11.9562890 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Daniel R. Jones 0000-0002-4889-9153 1 Haytham E. M. Hussein 2 Eleri Worsley 3 Sajad Kiani 0000-0003-1609-6855 4 Kittiwat Kamlungsua 5 Thomas Fone 6 Christopher Phillips 0000-0001-8011-710X 7 Davide Deganello 0000-0001-8341-4177 8 63191__28439__247aa65656d141fc8b7251b1c27dac7d.pdf 63191.VOR.pdf 2023-09-04T13:18:35.3470366 Output 2976002 application/pdf Version of Record true This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products |
spellingShingle |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products Eleri Worsley Sajad Kiani Thomas Fone Christopher Phillips Davide Deganello |
title_short |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products |
title_full |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products |
title_fullStr |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products |
title_full_unstemmed |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products |
title_sort |
Scalable Synthesis of Pre‐Intercalated Manganese(III/IV) Oxide Nanostructures for Supercapacitor Electrodes: Electrochemical Comparison of Birnessite and Cryptomelane Products |
author_id_str_mv |
8484ab36e02699f52d48bbfe36b7ac74 fe9ec46699e095368faf2a0465b598c5 dc60933e11ebcdd7a7fa2be4b12a3b53 cc734f776f10b3fb9b43816c9f617bb5 ea38a0040bdfd3875506189e3629b32a |
author_id_fullname_str_mv |
8484ab36e02699f52d48bbfe36b7ac74_***_Eleri Worsley fe9ec46699e095368faf2a0465b598c5_***_Sajad Kiani dc60933e11ebcdd7a7fa2be4b12a3b53_***_Thomas Fone cc734f776f10b3fb9b43816c9f617bb5_***_Christopher Phillips ea38a0040bdfd3875506189e3629b32a_***_Davide Deganello |
author |
Eleri Worsley Sajad Kiani Thomas Fone Christopher Phillips Davide Deganello |
author2 |
Daniel R. Jones Haytham E. M. Hussein Eleri Worsley Sajad Kiani Kittiwat Kamlungsua Thomas Fone Christopher Phillips Davide Deganello |
format |
Journal article |
container_title |
ChemElectroChem |
container_volume |
10 |
container_issue |
14 |
publishDate |
2023 |
institution |
Swansea University |
issn |
2196-0216 2196-0216 |
doi_str_mv |
10.1002/celc.202300210 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
url |
http://dx.doi.org/10.1002/celc.202300210 |
document_store_str |
1 |
active_str |
0 |
description |
Manganese(III/IV) oxide is a promising pseudocapacitive material for supercapacitor electrodes due to favorable attributes such as its chemical resilience, high earth abundance and low specific cost. Herein, the morphological, compositional and electrochemical characteristics of co-precipitated manganese(III/IV) oxide products, each described by the general formula NaxKyMnOz, are investigated to establish how these properties are influenced by synthesis conditions. NaxKyMnOz growths in low-temperature (<100 °C) basic and acidic environments are shown to promote the formation of turbostratic birnessite and cryptomelane phases, respectively, with the latter polymorph containing a relatively low concentration of interstitial Na+ and K+ cations. It is demonstrated that K+ pre-insertion during synthesis yields lower initial charge-transfer resistances than equivalent Na+ intercalation, and that this parameter correlates strongly with storage performance. Accordingly, Na-mediated storage initially delivers inferior specific capacitances and Coulombic efficiencies than K-based mechanisms, but K+ intercalation/deintercalation causes faster capacitance decay during prolonged galvanostatic cycling. Furthermore, whilst crystallographic phase is shown to have a weaker effect on NaxKyMnOz storage properties than the choice of intercalating guest cations, cryptomelane electrodes are more susceptible to cycling-induced capacitance and efficiency losses than their birnessite counterparts. In combination, these insights provide an instructive foundation for the optimization of NaxKyMnOz in high-power storage applications. |
published_date |
2023-07-17T05:25:27Z |
_version_ |
1821381888575537152 |
score |
11.04748 |