Journal article 751 views 62 downloads
Augmenting the Performance of Hydrogenase for Aerobic Photocatalytic Hydrogen Evolution via Solvent Tuning
Angewandte Chemie International Edition, Volume: 62, Issue: 22
Swansea University Authors: Michael Allan, Moritz Kuehnel
-
PDF | Version of Record
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).
Download (2.8MB)
DOI (Published version): 10.1002/anie.202219176
Abstract
This work showcases the performance of [NiFeSe] hydrogenase from Desulfomicrobium baculatum for solar-driven hydrogen generation in a variety of organic-based deep eutectic solvents. Despite its well-known sensitivity towards air and organic solvents, the hydrogenase shows remarkable performance und...
Published in: | Angewandte Chemie International Edition |
---|---|
ISSN: | 1433-7851 1521-3773 |
Published: |
Wiley
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63074 |
Abstract: |
This work showcases the performance of [NiFeSe] hydrogenase from Desulfomicrobium baculatum for solar-driven hydrogen generation in a variety of organic-based deep eutectic solvents. Despite its well-known sensitivity towards air and organic solvents, the hydrogenase shows remarkable performance under an aerobic atmosphere in these solvents when paired with a TiO2 photocatalyst. Tuning the water content further increases hydrogen evolution activity to a TOF of 60±3 s−1 and quantum yield to 2.3±0.4 % under aerobic conditions, compared to a TOF of 4 s−1 in a purely aqueous solvent. Contrary to common belief, this work therefore demonstrates that placing natural hydrogenases into non-natural environments can enhance their intrinsic activity beyond their natural performance, paving the way for full water splitting using hydrogenases. |
---|---|
Keywords: |
Deep Eutectic Solvents, Hydrogen, Hydrogenase,Oxygen Tolerance, Photocatalysis |
College: |
Faculty of Science and Engineering |
Funders: |
Swansea University. This work was supported by EPSRC through a DTA studentship to M.G.A. (EP/R51312X/1), and a capital investment grant to M.F.K. (EP/S017925/1), by Universities Wales through the Global Wales International Research Mobility Fund (UNIW/RMF-SU/07) and by HEFCW through the Research Wales Innovation Fund Collaboration Booster. We thank Swansea University for providing start-up funds to M.F.K. and support through the Swansea-Grenoble Collaboration Fund. This work was supported by the Agence Nationale de la Recherche through the LabEx ARCANE program (ANR-11-LABX-0003-01), the Graduate School on Chemistry, Biology and Health of Univ. Grenoble Alpes CBH-EUR-GS (ANR-17-EURE-0003) and by the CFR PhD program-CEA (PhD funding for T.P.). We thank Dr. Oliver Lenz and Dr. Stefan Frielingsdorf (TU Berlin) and Prof. Frank Marken (Bath) for helpful discussions. |
Issue: |
22 |