No Cover Image

Book chapter 688 views

Using online data in terrorism research

Stuart Macdonald Orcid Logo, Elizabeth Pearson Orcid Logo, RYAN SCRIVENS, Joe Whittaker Orcid Logo

A Research Agenda for Terrorism Studies, Pages: 145 - 158

Swansea University Authors: Stuart Macdonald Orcid Logo, Elizabeth Pearson Orcid Logo, RYAN SCRIVENS, Joe Whittaker Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.4337/9781789909104.00016

Abstract

This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘ho...

Full description

Published in: A Research Agenda for Terrorism Studies
ISBN: 9781789909098 9781789909104
Published: Edward Elgar Publishing 2023
URI: https://cronfa.swan.ac.uk/Record/cronfa62753
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2023-02-26T09:05:28Z
last_indexed 2023-03-10T04:14:24Z
id cronfa62753
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>62753</id><entry>2023-02-26</entry><title>Using online data in terrorism research</title><swanseaauthors><author><sid>933e714a4cc37c3ac12d4edc277f8f98</sid><ORCID>0000-0002-7483-9023</ORCID><firstname>Stuart</firstname><surname>Macdonald</surname><name>Stuart Macdonald</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b849177199f7a9a44ddecec011c4bf92</sid><ORCID>0000-0003-0918-6107</ORCID><firstname>Elizabeth</firstname><surname>Pearson</surname><name>Elizabeth Pearson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5e211ad0cb78c7d0241091678402ecb</sid><firstname>RYAN</firstname><surname>SCRIVENS</surname><name>RYAN SCRIVENS</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>112ed59957393e783f913443ec80faab</sid><ORCID>0000-0001-7342-6369</ORCID><firstname>Joe</firstname><surname>Whittaker</surname><name>Joe Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-26</date><deptcode>LAWD</deptcode><abstract>This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘how’ and ‘why’ questions. Given the difficulty of research with this population, case studies lend themselves to analysis of an individual terrorist’s behaviour. Finally, netnography (an ethnographic study of online communities) is reviewed with the argument that it has furthered our understanding of radicalisation. This area of research considers the intersection of online and offline relationships in mobilising people towards radicalisation. The chapter concludes with a review of the benefits and weaknesses of these different online research methods.</abstract><type>Book chapter</type><journal>A Research Agenda for Terrorism Studies</journal><volume/><journalNumber/><paginationStart>145</paginationStart><paginationEnd>158</paginationEnd><publisher>Edward Elgar Publishing</publisher><placeOfPublication/><isbnPrint>9781789909098</isbnPrint><isbnElectronic>9781789909104</isbnElectronic><issnPrint/><issnElectronic/><keywords>Terrorism research; Machine learning; Case studies; Netnography; Online data; Radicalisation</keywords><publishedDay>21</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-21</publishedDate><doi>10.4337/9781789909104.00016</doi><url/><notes/><college>COLLEGE NANME</college><department>Law</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>LAWD</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2024-02-23T15:28:53.2331258</lastEdited><Created>2023-02-26T08:53:08.8414650</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">Hilary Rodham Clinton School of Law</level></path><authors><author><firstname>Stuart</firstname><surname>Macdonald</surname><orcid>0000-0002-7483-9023</orcid><order>1</order></author><author><firstname>Elizabeth</firstname><surname>Pearson</surname><orcid>0000-0003-0918-6107</orcid><order>2</order></author><author><firstname>RYAN</firstname><surname>SCRIVENS</surname><order>3</order></author><author><firstname>Joe</firstname><surname>Whittaker</surname><orcid>0000-0001-7342-6369</orcid><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling v2 62753 2023-02-26 Using online data in terrorism research 933e714a4cc37c3ac12d4edc277f8f98 0000-0002-7483-9023 Stuart Macdonald Stuart Macdonald true false b849177199f7a9a44ddecec011c4bf92 0000-0003-0918-6107 Elizabeth Pearson Elizabeth Pearson true false e5e211ad0cb78c7d0241091678402ecb RYAN SCRIVENS RYAN SCRIVENS true false 112ed59957393e783f913443ec80faab 0000-0001-7342-6369 Joe Whittaker Joe Whittaker true false 2023-02-26 LAWD This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘how’ and ‘why’ questions. Given the difficulty of research with this population, case studies lend themselves to analysis of an individual terrorist’s behaviour. Finally, netnography (an ethnographic study of online communities) is reviewed with the argument that it has furthered our understanding of radicalisation. This area of research considers the intersection of online and offline relationships in mobilising people towards radicalisation. The chapter concludes with a review of the benefits and weaknesses of these different online research methods. Book chapter A Research Agenda for Terrorism Studies 145 158 Edward Elgar Publishing 9781789909098 9781789909104 Terrorism research; Machine learning; Case studies; Netnography; Online data; Radicalisation 21 2 2023 2023-02-21 10.4337/9781789909104.00016 COLLEGE NANME Law COLLEGE CODE LAWD Swansea University Not Required 2024-02-23T15:28:53.2331258 2023-02-26T08:53:08.8414650 Faculty of Humanities and Social Sciences Hilary Rodham Clinton School of Law Stuart Macdonald 0000-0002-7483-9023 1 Elizabeth Pearson 0000-0003-0918-6107 2 RYAN SCRIVENS 3 Joe Whittaker 0000-0001-7342-6369 4
title Using online data in terrorism research
spellingShingle Using online data in terrorism research
Stuart Macdonald
Elizabeth Pearson
RYAN SCRIVENS
Joe Whittaker
title_short Using online data in terrorism research
title_full Using online data in terrorism research
title_fullStr Using online data in terrorism research
title_full_unstemmed Using online data in terrorism research
title_sort Using online data in terrorism research
author_id_str_mv 933e714a4cc37c3ac12d4edc277f8f98
b849177199f7a9a44ddecec011c4bf92
e5e211ad0cb78c7d0241091678402ecb
112ed59957393e783f913443ec80faab
author_id_fullname_str_mv 933e714a4cc37c3ac12d4edc277f8f98_***_Stuart Macdonald
b849177199f7a9a44ddecec011c4bf92_***_Elizabeth Pearson
e5e211ad0cb78c7d0241091678402ecb_***_RYAN SCRIVENS
112ed59957393e783f913443ec80faab_***_Joe Whittaker
author Stuart Macdonald
Elizabeth Pearson
RYAN SCRIVENS
Joe Whittaker
author2 Stuart Macdonald
Elizabeth Pearson
RYAN SCRIVENS
Joe Whittaker
format Book chapter
container_title A Research Agenda for Terrorism Studies
container_start_page 145
publishDate 2023
institution Swansea University
isbn 9781789909098
9781789909104
doi_str_mv 10.4337/9781789909104.00016
publisher Edward Elgar Publishing
college_str Faculty of Humanities and Social Sciences
hierarchytype
hierarchy_top_id facultyofhumanitiesandsocialsciences
hierarchy_top_title Faculty of Humanities and Social Sciences
hierarchy_parent_id facultyofhumanitiesandsocialsciences
hierarchy_parent_title Faculty of Humanities and Social Sciences
department_str Hilary Rodham Clinton School of Law{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}Hilary Rodham Clinton School of Law
document_store_str 0
active_str 0
description This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘how’ and ‘why’ questions. Given the difficulty of research with this population, case studies lend themselves to analysis of an individual terrorist’s behaviour. Finally, netnography (an ethnographic study of online communities) is reviewed with the argument that it has furthered our understanding of radicalisation. This area of research considers the intersection of online and offline relationships in mobilising people towards radicalisation. The chapter concludes with a review of the benefits and weaknesses of these different online research methods.
published_date 2023-02-21T15:28:48Z
_version_ 1791704043347771392
score 11.037581