Book chapter 688 views
Using online data in terrorism research
A Research Agenda for Terrorism Studies, Pages: 145 - 158
Swansea University Authors: Stuart Macdonald , Elizabeth Pearson , RYAN SCRIVENS, Joe Whittaker
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.4337/9781789909104.00016
Abstract
This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘ho...
Published in: | A Research Agenda for Terrorism Studies |
---|---|
ISBN: | 9781789909098 9781789909104 |
Published: |
Edward Elgar Publishing
2023
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62753 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2023-02-26T09:05:28Z |
---|---|
last_indexed |
2023-03-10T04:14:24Z |
id |
cronfa62753 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>62753</id><entry>2023-02-26</entry><title>Using online data in terrorism research</title><swanseaauthors><author><sid>933e714a4cc37c3ac12d4edc277f8f98</sid><ORCID>0000-0002-7483-9023</ORCID><firstname>Stuart</firstname><surname>Macdonald</surname><name>Stuart Macdonald</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b849177199f7a9a44ddecec011c4bf92</sid><ORCID>0000-0003-0918-6107</ORCID><firstname>Elizabeth</firstname><surname>Pearson</surname><name>Elizabeth Pearson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5e211ad0cb78c7d0241091678402ecb</sid><firstname>RYAN</firstname><surname>SCRIVENS</surname><name>RYAN SCRIVENS</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>112ed59957393e783f913443ec80faab</sid><ORCID>0000-0001-7342-6369</ORCID><firstname>Joe</firstname><surname>Whittaker</surname><name>Joe Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-26</date><deptcode>LAWD</deptcode><abstract>This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘how’ and ‘why’ questions. Given the difficulty of research with this population, case studies lend themselves to analysis of an individual terrorist’s behaviour. Finally, netnography (an ethnographic study of online communities) is reviewed with the argument that it has furthered our understanding of radicalisation. This area of research considers the intersection of online and offline relationships in mobilising people towards radicalisation. The chapter concludes with a review of the benefits and weaknesses of these different online research methods.</abstract><type>Book chapter</type><journal>A Research Agenda for Terrorism Studies</journal><volume/><journalNumber/><paginationStart>145</paginationStart><paginationEnd>158</paginationEnd><publisher>Edward Elgar Publishing</publisher><placeOfPublication/><isbnPrint>9781789909098</isbnPrint><isbnElectronic>9781789909104</isbnElectronic><issnPrint/><issnElectronic/><keywords>Terrorism research; Machine learning; Case studies; Netnography; Online data; Radicalisation</keywords><publishedDay>21</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-21</publishedDate><doi>10.4337/9781789909104.00016</doi><url/><notes/><college>COLLEGE NANME</college><department>Law</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>LAWD</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2024-02-23T15:28:53.2331258</lastEdited><Created>2023-02-26T08:53:08.8414650</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">Hilary Rodham Clinton School of Law</level></path><authors><author><firstname>Stuart</firstname><surname>Macdonald</surname><orcid>0000-0002-7483-9023</orcid><order>1</order></author><author><firstname>Elizabeth</firstname><surname>Pearson</surname><orcid>0000-0003-0918-6107</orcid><order>2</order></author><author><firstname>RYAN</firstname><surname>SCRIVENS</surname><order>3</order></author><author><firstname>Joe</firstname><surname>Whittaker</surname><orcid>0000-0001-7342-6369</orcid><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
v2 62753 2023-02-26 Using online data in terrorism research 933e714a4cc37c3ac12d4edc277f8f98 0000-0002-7483-9023 Stuart Macdonald Stuart Macdonald true false b849177199f7a9a44ddecec011c4bf92 0000-0003-0918-6107 Elizabeth Pearson Elizabeth Pearson true false e5e211ad0cb78c7d0241091678402ecb RYAN SCRIVENS RYAN SCRIVENS true false 112ed59957393e783f913443ec80faab 0000-0001-7342-6369 Joe Whittaker Joe Whittaker true false 2023-02-26 LAWD This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘how’ and ‘why’ questions. Given the difficulty of research with this population, case studies lend themselves to analysis of an individual terrorist’s behaviour. Finally, netnography (an ethnographic study of online communities) is reviewed with the argument that it has furthered our understanding of radicalisation. This area of research considers the intersection of online and offline relationships in mobilising people towards radicalisation. The chapter concludes with a review of the benefits and weaknesses of these different online research methods. Book chapter A Research Agenda for Terrorism Studies 145 158 Edward Elgar Publishing 9781789909098 9781789909104 Terrorism research; Machine learning; Case studies; Netnography; Online data; Radicalisation 21 2 2023 2023-02-21 10.4337/9781789909104.00016 COLLEGE NANME Law COLLEGE CODE LAWD Swansea University Not Required 2024-02-23T15:28:53.2331258 2023-02-26T08:53:08.8414650 Faculty of Humanities and Social Sciences Hilary Rodham Clinton School of Law Stuart Macdonald 0000-0002-7483-9023 1 Elizabeth Pearson 0000-0003-0918-6107 2 RYAN SCRIVENS 3 Joe Whittaker 0000-0001-7342-6369 4 |
title |
Using online data in terrorism research |
spellingShingle |
Using online data in terrorism research Stuart Macdonald Elizabeth Pearson RYAN SCRIVENS Joe Whittaker |
title_short |
Using online data in terrorism research |
title_full |
Using online data in terrorism research |
title_fullStr |
Using online data in terrorism research |
title_full_unstemmed |
Using online data in terrorism research |
title_sort |
Using online data in terrorism research |
author_id_str_mv |
933e714a4cc37c3ac12d4edc277f8f98 b849177199f7a9a44ddecec011c4bf92 e5e211ad0cb78c7d0241091678402ecb 112ed59957393e783f913443ec80faab |
author_id_fullname_str_mv |
933e714a4cc37c3ac12d4edc277f8f98_***_Stuart Macdonald b849177199f7a9a44ddecec011c4bf92_***_Elizabeth Pearson e5e211ad0cb78c7d0241091678402ecb_***_RYAN SCRIVENS 112ed59957393e783f913443ec80faab_***_Joe Whittaker |
author |
Stuart Macdonald Elizabeth Pearson RYAN SCRIVENS Joe Whittaker |
author2 |
Stuart Macdonald Elizabeth Pearson RYAN SCRIVENS Joe Whittaker |
format |
Book chapter |
container_title |
A Research Agenda for Terrorism Studies |
container_start_page |
145 |
publishDate |
2023 |
institution |
Swansea University |
isbn |
9781789909098 9781789909104 |
doi_str_mv |
10.4337/9781789909104.00016 |
publisher |
Edward Elgar Publishing |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
Hilary Rodham Clinton School of Law{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}Hilary Rodham Clinton School of Law |
document_store_str |
0 |
active_str |
0 |
description |
This chapter considers three types of online data available for researchers. First, it looks at machine learning and its use when considering the vast amount of data available to detect indicators of involvement in terrorism. Next, the chapter considers case studies and their use when addressing ‘how’ and ‘why’ questions. Given the difficulty of research with this population, case studies lend themselves to analysis of an individual terrorist’s behaviour. Finally, netnography (an ethnographic study of online communities) is reviewed with the argument that it has furthered our understanding of radicalisation. This area of research considers the intersection of online and offline relationships in mobilising people towards radicalisation. The chapter concludes with a review of the benefits and weaknesses of these different online research methods. |
published_date |
2023-02-21T15:28:48Z |
_version_ |
1791704043347771392 |
score |
11.037581 |