Journal article 559 views 23 downloads
Creating metal saturated growth in MOCVD for CdTe solar cells
Journal of Crystal Growth, Volume: 607, Start page: 127124
Swansea University Authors: Stuart Irvine, Ochai Oklobia, Steven Jones, David Lamb , Giray Kartopu
-
PDF | Accepted Manuscript
©2023 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (799.36KB)
DOI (Published version): 10.1016/j.jcrysgro.2023.127124
Abstract
Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is und...
Published in: | Journal of Crystal Growth |
---|---|
ISSN: | 0022-0248 |
Published: |
Elsevier BV
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62584 |
first_indexed |
2023-02-06T11:54:09Z |
---|---|
last_indexed |
2024-11-14T12:21:13Z |
id |
cronfa62584 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-07-29T13:23:53.1423401</datestamp><bib-version>v2</bib-version><id>62584</id><entry>2023-02-06</entry><title>Creating metal saturated growth in MOCVD for CdTe solar cells</title><swanseaauthors><author><sid>1ddb966eccef99aa96e87f1ea4917f1f</sid><firstname>Stuart</firstname><surname>Irvine</surname><name>Stuart Irvine</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d447e8d0345473fa625813546bccc592</sid><firstname>Ochai</firstname><surname>Oklobia</surname><name>Ochai Oklobia</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>47e09369e843bd6b9bec0f27016e9f70</sid><ORCID/><firstname>Steven</firstname><surname>Jones</surname><name>Steven Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1dc64e55c2c28d107ef7c3db984cccd2</sid><ORCID>0000-0001-5446-2997</ORCID><firstname>David</firstname><surname>Lamb</surname><name>David Lamb</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5c4917e0a29801844ec31737672f930c</sid><firstname>Giray</firstname><surname>Kartopu</surname><name>Giray Kartopu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-06</date><abstract>Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is under metal saturated growth. This has been applied to the arsenic doping of CdTe solar cells where it was shown that increasing the II/VI precursor ratio resulted in an increase in As dopant incorporation. The growth kinetics were determined by the diisopropyl tellurium (DIPTe) concentration for II/VI precursor ratios above 2. A method is presented where the change in II/VI precursor ratio can be predicted for different positions in a horizontal MOCVD chamber that has, in turn, enabled variation in NA and the solar cell open circuit voltage (Voc) to be determined as a function of the II/VI precursor ratio. This gives new insight to the thermodynamic drivers in MOCVD growth for improved solar cell Voc and is a method that could be applied to MOCVD of other II-VI semiconductors.</abstract><type>Journal Article</type><journal>Journal of Crystal Growth</journal><volume>607</volume><journalNumber/><paginationStart>127124</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-0248</issnPrint><issnElectronic/><keywords>A1. Phase equilibria; A3. Metal organic chemical vapour deposition; B1. Cadmium compounds; B2. Semiconducting cadmium compounds; B2. Semiconducting II–VI materials; B3. Solar cells</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-04-01</publishedDate><doi>10.1016/j.jcrysgro.2023.127124</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>The authors would like to acknowledge funding by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom via the grant EP/W000555/1 and from the European Regional Development Fund (ERDF) and the Welsh European Funding Office (WEFO) for funding the 2nd Solar Photovoltaic Academic Research Consortium (SPARC II) which supported this research. The authors also acknowledge support from First Solar Inc.</funders><projectreference/><lastEdited>2024-07-29T13:23:53.1423401</lastEdited><Created>2023-02-06T11:49:40.1685285</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Stuart</firstname><surname>Irvine</surname><order>1</order></author><author><firstname>Ochai</firstname><surname>Oklobia</surname><order>2</order></author><author><firstname>Steven</firstname><surname>Jones</surname><orcid/><order>3</order></author><author><firstname>David</firstname><surname>Lamb</surname><orcid>0000-0001-5446-2997</orcid><order>4</order></author><author><firstname>Giray</firstname><surname>Kartopu</surname><order>5</order></author><author><firstname>D.</firstname><surname>Lu</surname><order>6</order></author><author><firstname>G.</firstname><surname>Xiong</surname><order>7</order></author></authors><documents><document><filename>62584__26479__b897d55ca1b341dcaf43dabd7937cbc8.pdf</filename><originalFilename>62584.pdf</originalFilename><uploaded>2023-02-06T11:53:17.2172674</uploaded><type>Output</type><contentLength>818545</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2024-02-02T00:00:00.0000000</embargoDate><documentNotes>©2023 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-07-29T13:23:53.1423401 v2 62584 2023-02-06 Creating metal saturated growth in MOCVD for CdTe solar cells 1ddb966eccef99aa96e87f1ea4917f1f Stuart Irvine Stuart Irvine true false d447e8d0345473fa625813546bccc592 Ochai Oklobia Ochai Oklobia true false 47e09369e843bd6b9bec0f27016e9f70 Steven Jones Steven Jones true false 1dc64e55c2c28d107ef7c3db984cccd2 0000-0001-5446-2997 David Lamb David Lamb true false 5c4917e0a29801844ec31737672f930c Giray Kartopu Giray Kartopu true false 2023-02-06 Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is under metal saturated growth. This has been applied to the arsenic doping of CdTe solar cells where it was shown that increasing the II/VI precursor ratio resulted in an increase in As dopant incorporation. The growth kinetics were determined by the diisopropyl tellurium (DIPTe) concentration for II/VI precursor ratios above 2. A method is presented where the change in II/VI precursor ratio can be predicted for different positions in a horizontal MOCVD chamber that has, in turn, enabled variation in NA and the solar cell open circuit voltage (Voc) to be determined as a function of the II/VI precursor ratio. This gives new insight to the thermodynamic drivers in MOCVD growth for improved solar cell Voc and is a method that could be applied to MOCVD of other II-VI semiconductors. Journal Article Journal of Crystal Growth 607 127124 Elsevier BV 0022-0248 A1. Phase equilibria; A3. Metal organic chemical vapour deposition; B1. Cadmium compounds; B2. Semiconducting cadmium compounds; B2. Semiconducting II–VI materials; B3. Solar cells 1 4 2023 2023-04-01 10.1016/j.jcrysgro.2023.127124 COLLEGE NANME COLLEGE CODE Swansea University The authors would like to acknowledge funding by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom via the grant EP/W000555/1 and from the European Regional Development Fund (ERDF) and the Welsh European Funding Office (WEFO) for funding the 2nd Solar Photovoltaic Academic Research Consortium (SPARC II) which supported this research. The authors also acknowledge support from First Solar Inc. 2024-07-29T13:23:53.1423401 2023-02-06T11:49:40.1685285 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Stuart Irvine 1 Ochai Oklobia 2 Steven Jones 3 David Lamb 0000-0001-5446-2997 4 Giray Kartopu 5 D. Lu 6 G. Xiong 7 62584__26479__b897d55ca1b341dcaf43dabd7937cbc8.pdf 62584.pdf 2023-02-06T11:53:17.2172674 Output 818545 application/pdf Accepted Manuscript true 2024-02-02T00:00:00.0000000 ©2023 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Creating metal saturated growth in MOCVD for CdTe solar cells |
spellingShingle |
Creating metal saturated growth in MOCVD for CdTe solar cells Stuart Irvine Ochai Oklobia Steven Jones David Lamb Giray Kartopu |
title_short |
Creating metal saturated growth in MOCVD for CdTe solar cells |
title_full |
Creating metal saturated growth in MOCVD for CdTe solar cells |
title_fullStr |
Creating metal saturated growth in MOCVD for CdTe solar cells |
title_full_unstemmed |
Creating metal saturated growth in MOCVD for CdTe solar cells |
title_sort |
Creating metal saturated growth in MOCVD for CdTe solar cells |
author_id_str_mv |
1ddb966eccef99aa96e87f1ea4917f1f d447e8d0345473fa625813546bccc592 47e09369e843bd6b9bec0f27016e9f70 1dc64e55c2c28d107ef7c3db984cccd2 5c4917e0a29801844ec31737672f930c |
author_id_fullname_str_mv |
1ddb966eccef99aa96e87f1ea4917f1f_***_Stuart Irvine d447e8d0345473fa625813546bccc592_***_Ochai Oklobia 47e09369e843bd6b9bec0f27016e9f70_***_Steven Jones 1dc64e55c2c28d107ef7c3db984cccd2_***_David Lamb 5c4917e0a29801844ec31737672f930c_***_Giray Kartopu |
author |
Stuart Irvine Ochai Oklobia Steven Jones David Lamb Giray Kartopu |
author2 |
Stuart Irvine Ochai Oklobia Steven Jones David Lamb Giray Kartopu D. Lu G. Xiong |
format |
Journal article |
container_title |
Journal of Crystal Growth |
container_volume |
607 |
container_start_page |
127124 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0022-0248 |
doi_str_mv |
10.1016/j.jcrysgro.2023.127124 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is under metal saturated growth. This has been applied to the arsenic doping of CdTe solar cells where it was shown that increasing the II/VI precursor ratio resulted in an increase in As dopant incorporation. The growth kinetics were determined by the diisopropyl tellurium (DIPTe) concentration for II/VI precursor ratios above 2. A method is presented where the change in II/VI precursor ratio can be predicted for different positions in a horizontal MOCVD chamber that has, in turn, enabled variation in NA and the solar cell open circuit voltage (Voc) to be determined as a function of the II/VI precursor ratio. This gives new insight to the thermodynamic drivers in MOCVD growth for improved solar cell Voc and is a method that could be applied to MOCVD of other II-VI semiconductors. |
published_date |
2023-04-01T02:36:41Z |
_version_ |
1821371271144800256 |
score |
11.04748 |