No Cover Image

Journal article 557 views 23 downloads

Creating metal saturated growth in MOCVD for CdTe solar cells

Stuart Irvine, Ochai Oklobia, Steven Jones, David Lamb Orcid Logo, Giray Kartopu, D. Lu, G. Xiong

Journal of Crystal Growth, Volume: 607, Start page: 127124

Swansea University Authors: Stuart Irvine, Ochai Oklobia, Steven Jones, David Lamb Orcid Logo, Giray Kartopu

  • 62584.pdf

    PDF | Accepted Manuscript

    ©2023 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (799.36KB)

Abstract

Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is und...

Full description

Published in: Journal of Crystal Growth
ISSN: 0022-0248
Published: Elsevier BV 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62584
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2023-02-06T11:54:09Z
last_indexed 2023-03-04T04:14:38Z
id cronfa62584
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>62584</id><entry>2023-02-06</entry><title>Creating metal saturated growth in MOCVD for CdTe solar cells</title><swanseaauthors><author><sid>1ddb966eccef99aa96e87f1ea4917f1f</sid><firstname>Stuart</firstname><surname>Irvine</surname><name>Stuart Irvine</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d447e8d0345473fa625813546bccc592</sid><firstname>Ochai</firstname><surname>Oklobia</surname><name>Ochai Oklobia</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>47e09369e843bd6b9bec0f27016e9f70</sid><ORCID/><firstname>Steven</firstname><surname>Jones</surname><name>Steven Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1dc64e55c2c28d107ef7c3db984cccd2</sid><ORCID>0000-0001-5446-2997</ORCID><firstname>David</firstname><surname>Lamb</surname><name>David Lamb</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5c4917e0a29801844ec31737672f930c</sid><firstname>Giray</firstname><surname>Kartopu</surname><name>Giray Kartopu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-06</date><abstract>Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is under metal saturated growth. This has been applied to the arsenic doping of CdTe solar cells where it was shown that increasing the II/VI precursor ratio resulted in an increase in As dopant incorporation. The growth kinetics were determined by the diisopropyl tellurium (DIPTe) concentration for II/VI precursor ratios above 2. A method is presented where the change in II/VI precursor ratio can be predicted for different positions in a horizontal MOCVD chamber that has, in turn, enabled variation in NA and the solar cell open circuit voltage (Voc) to be determined as a function of the II/VI precursor ratio. This gives new insight to the thermodynamic drivers in MOCVD growth for improved solar cell Voc and is a method that could be applied to MOCVD of other II-VI semiconductors.</abstract><type>Journal Article</type><journal>Journal of Crystal Growth</journal><volume>607</volume><journalNumber/><paginationStart>127124</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-0248</issnPrint><issnElectronic/><keywords>A1. Phase equilibria; A3. Metal organic chemical vapour deposition; B1. Cadmium compounds; B2. Semiconducting cadmium compounds; B2. Semiconducting II–VI materials; B3. Solar cells</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-04-01</publishedDate><doi>10.1016/j.jcrysgro.2023.127124</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>The authors would like to acknowledge funding by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom via the grant EP/W000555/1 and from the European Regional Development Fund (ERDF) and the Welsh European Funding Office (WEFO) for funding the 2nd Solar Photovoltaic Academic Research Consortium (SPARC II) which supported this research. The authors also acknowledge support from First Solar Inc.</funders><projectreference/><lastEdited>2024-07-29T13:23:53.1423401</lastEdited><Created>2023-02-06T11:49:40.1685285</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Stuart</firstname><surname>Irvine</surname><order>1</order></author><author><firstname>Ochai</firstname><surname>Oklobia</surname><order>2</order></author><author><firstname>Steven</firstname><surname>Jones</surname><orcid/><order>3</order></author><author><firstname>David</firstname><surname>Lamb</surname><orcid>0000-0001-5446-2997</orcid><order>4</order></author><author><firstname>Giray</firstname><surname>Kartopu</surname><order>5</order></author><author><firstname>D.</firstname><surname>Lu</surname><order>6</order></author><author><firstname>G.</firstname><surname>Xiong</surname><order>7</order></author></authors><documents><document><filename>62584__26479__b897d55ca1b341dcaf43dabd7937cbc8.pdf</filename><originalFilename>62584.pdf</originalFilename><uploaded>2023-02-06T11:53:17.2172674</uploaded><type>Output</type><contentLength>818545</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2024-02-02T00:00:00.0000000</embargoDate><documentNotes>©2023 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling v2 62584 2023-02-06 Creating metal saturated growth in MOCVD for CdTe solar cells 1ddb966eccef99aa96e87f1ea4917f1f Stuart Irvine Stuart Irvine true false d447e8d0345473fa625813546bccc592 Ochai Oklobia Ochai Oklobia true false 47e09369e843bd6b9bec0f27016e9f70 Steven Jones Steven Jones true false 1dc64e55c2c28d107ef7c3db984cccd2 0000-0001-5446-2997 David Lamb David Lamb true false 5c4917e0a29801844ec31737672f930c Giray Kartopu Giray Kartopu true false 2023-02-06 Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is under metal saturated growth. This has been applied to the arsenic doping of CdTe solar cells where it was shown that increasing the II/VI precursor ratio resulted in an increase in As dopant incorporation. The growth kinetics were determined by the diisopropyl tellurium (DIPTe) concentration for II/VI precursor ratios above 2. A method is presented where the change in II/VI precursor ratio can be predicted for different positions in a horizontal MOCVD chamber that has, in turn, enabled variation in NA and the solar cell open circuit voltage (Voc) to be determined as a function of the II/VI precursor ratio. This gives new insight to the thermodynamic drivers in MOCVD growth for improved solar cell Voc and is a method that could be applied to MOCVD of other II-VI semiconductors. Journal Article Journal of Crystal Growth 607 127124 Elsevier BV 0022-0248 A1. Phase equilibria; A3. Metal organic chemical vapour deposition; B1. Cadmium compounds; B2. Semiconducting cadmium compounds; B2. Semiconducting II–VI materials; B3. Solar cells 1 4 2023 2023-04-01 10.1016/j.jcrysgro.2023.127124 COLLEGE NANME COLLEGE CODE Swansea University The authors would like to acknowledge funding by the Engineering and Physical Sciences Research Council (EPSRC), United Kingdom via the grant EP/W000555/1 and from the European Regional Development Fund (ERDF) and the Welsh European Funding Office (WEFO) for funding the 2nd Solar Photovoltaic Academic Research Consortium (SPARC II) which supported this research. The authors also acknowledge support from First Solar Inc. 2024-07-29T13:23:53.1423401 2023-02-06T11:49:40.1685285 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Stuart Irvine 1 Ochai Oklobia 2 Steven Jones 3 David Lamb 0000-0001-5446-2997 4 Giray Kartopu 5 D. Lu 6 G. Xiong 7 62584__26479__b897d55ca1b341dcaf43dabd7937cbc8.pdf 62584.pdf 2023-02-06T11:53:17.2172674 Output 818545 application/pdf Accepted Manuscript true 2024-02-02T00:00:00.0000000 ©2023 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Creating metal saturated growth in MOCVD for CdTe solar cells
spellingShingle Creating metal saturated growth in MOCVD for CdTe solar cells
Stuart Irvine
Ochai Oklobia
Steven Jones
David Lamb
Giray Kartopu
title_short Creating metal saturated growth in MOCVD for CdTe solar cells
title_full Creating metal saturated growth in MOCVD for CdTe solar cells
title_fullStr Creating metal saturated growth in MOCVD for CdTe solar cells
title_full_unstemmed Creating metal saturated growth in MOCVD for CdTe solar cells
title_sort Creating metal saturated growth in MOCVD for CdTe solar cells
author_id_str_mv 1ddb966eccef99aa96e87f1ea4917f1f
d447e8d0345473fa625813546bccc592
47e09369e843bd6b9bec0f27016e9f70
1dc64e55c2c28d107ef7c3db984cccd2
5c4917e0a29801844ec31737672f930c
author_id_fullname_str_mv 1ddb966eccef99aa96e87f1ea4917f1f_***_Stuart Irvine
d447e8d0345473fa625813546bccc592_***_Ochai Oklobia
47e09369e843bd6b9bec0f27016e9f70_***_Steven Jones
1dc64e55c2c28d107ef7c3db984cccd2_***_David Lamb
5c4917e0a29801844ec31737672f930c_***_Giray Kartopu
author Stuart Irvine
Ochai Oklobia
Steven Jones
David Lamb
Giray Kartopu
author2 Stuart Irvine
Ochai Oklobia
Steven Jones
David Lamb
Giray Kartopu
D. Lu
G. Xiong
format Journal article
container_title Journal of Crystal Growth
container_volume 607
container_start_page 127124
publishDate 2023
institution Swansea University
issn 0022-0248
doi_str_mv 10.1016/j.jcrysgro.2023.127124
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Determining the thermodynamic conditions in MOCVD growth of II-VI semiconductor materials is not as straightforward as in III-V growth where Group V hydrides are generally used. This paper establishes a technique, using in situ laser reflectometry, to ensure that the thermodynamic equilibrium is under metal saturated growth. This has been applied to the arsenic doping of CdTe solar cells where it was shown that increasing the II/VI precursor ratio resulted in an increase in As dopant incorporation. The growth kinetics were determined by the diisopropyl tellurium (DIPTe) concentration for II/VI precursor ratios above 2. A method is presented where the change in II/VI precursor ratio can be predicted for different positions in a horizontal MOCVD chamber that has, in turn, enabled variation in NA and the solar cell open circuit voltage (Voc) to be determined as a function of the II/VI precursor ratio. This gives new insight to the thermodynamic drivers in MOCVD growth for improved solar cell Voc and is a method that could be applied to MOCVD of other II-VI semiconductors.
published_date 2023-04-01T13:23:52Z
_version_ 1805916131370729472
score 11.037122