No Cover Image

Journal article 587 views 41 downloads

Structural Investigations on Novel Non-Nucleoside Inhibitors of Human Norovirus Polymerase

Gilda Giancotti Orcid Logo, Giulio Nannetti Orcid Logo, Gilda Padalino, Martina Landini, Nanci Santos-Ferreira Orcid Logo, Jana Van Dycke Orcid Logo, Valentina Naccarato, Usheer Patel, Romano Silvestri Orcid Logo, Johan Neyts Orcid Logo, Roberto Gozalbo-Rovira Orcid Logo, Jésus Rodríguez-Díaz Orcid Logo, Joana Rocha-Pereira Orcid Logo, Andrea Brancale Orcid Logo, Salvatore Ferla Orcid Logo, Marcella Bassetto

Viruses, Volume: 15, Issue: 1, Start page: 74

Swansea University Authors: Giulio Nannetti Orcid Logo, Salvatore Ferla Orcid Logo, Marcella Bassetto

  • 62577.pdf

    PDF | Version of Record

    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Download (7.93MB)

Check full text

DOI (Published version): 10.3390/v15010074

Abstract

Human norovirus is the first cause of foodborne disease worldwide, leading to extensive outbreaks of acute gastroenteritis, and causing around 200,000 children to die annually in developing countries. No specific vaccines or antiviral agents are currently available, with therapeutic options limited...

Full description

Published in: Viruses
ISSN: 1999-4915
Published: MDPI AG 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62577
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Human norovirus is the first cause of foodborne disease worldwide, leading to extensive outbreaks of acute gastroenteritis, and causing around 200,000 children to die annually in developing countries. No specific vaccines or antiviral agents are currently available, with therapeutic options limited to supportive care to prevent dehydration. The infection can become severe and lead to life-threatening complications in young children, the elderly and immunocompromised individuals, leading to a clear need for antiviral agents, to be used as treatments and as prophylactic measures in case of outbreaks. Due to the key role played by the viral RNA-dependent RNA polymerase (RdRp) in the virus life cycle, this enzyme is a promising target for antiviral drug discovery. In previous studies, following in silico investigations, we identified different small-molecule inhibitors of this enzyme. In this study, we rationally modified five identified scaffolds, to further explore structure–activity relationships, and to enhance binding to the RdRp. The newly designed compounds were synthesized according to multiple-step synthetic routes and evaluated for their inhibition of the enzyme in vitro. New inhibitors with low micromolar inhibitory activity of the RdRp were identified, which provide a promising basis for further hit-to-lead optimization.
Keywords: human norovirus; RdRp inhibitors; computer-aided drug design
College: Faculty of Science and Engineering
Funders: G.G. was supported by the Wellcome Trust through an ISSF3 Translational Kickstart Award. S.F. was supported by the Sêr Cymru II programme which is part-funded by Cardiff and Swansea Universities, and the European Regional Development Fund through the Welsh Government.
Issue: 1
Start Page: 74