No Cover Image

Journal article 550 views 61 downloads

Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology

NICHOLAS SALE, Biagio Lucini Orcid Logo, Jeffrey Giansiracusa Orcid Logo

Physical Review D, Volume: 107, Issue: 3

Swansea University Authors: NICHOLAS SALE, Biagio Lucini Orcid Logo, Jeffrey Giansiracusa Orcid Logo

  • 62194_VoR.pdf

    PDF | Version of Record

    Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license

    Download (1.05MB)

Abstract

We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using tw...

Full description

Published in: Physical Review D
ISSN: 2470-0010 2470-0029
Published: American Physical Society (APS) 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62194
first_indexed 2023-01-11T16:18:50Z
last_indexed 2023-03-31T03:20:01Z
id cronfa62194
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2023-03-30T13:40:43.5124840</datestamp><bib-version>v2</bib-version><id>62194</id><entry>2022-12-21</entry><title>Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology</title><swanseaauthors><author><sid>38dcae65204c8d1f606b578c99679c1f</sid><firstname>NICHOLAS</firstname><surname>SALE</surname><name>NICHOLAS SALE</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>03c4f93e1b94af60eb0c18c892b0c1d9</sid><ORCID>0000-0003-4252-0058</ORCID><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><name>Jeffrey Giansiracusa</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-12-21</date><abstract>We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical &#x3B2; and critical exponent of correlation length &#x3BD; of the deconfinement phase transition.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>107</volume><journalNumber>3</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-07</publishedDate><doi>10.1103/physrevd.107.034501</doi><url>http://dx.doi.org/10.1103/physrevd.107.034501</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>N. S. has been supported by a Swansea University Research Excellence Scholarship (SURES). J. G. was supported by Engineering and Physical Sciences Research Council Grant No. EP/R018472/1. B. L. received funding from the European Research Council (ERC) under the European Union&#x2019;s Horizon 2020 research and innovation program under Grant Agreement No. 813942. The work of B. L. was further supported in part by the UKRI Science and Technology Facilities Council (STFC) Consolidated Grant No. ST/T000813/1, by the Royal Society Wolfson Research Merit Grant No. WM170010, and by the Leverhulme Foundation Research Fellowship No. RF-2020-461\9.</funders><projectreference/><lastEdited>2023-03-30T13:40:43.5124840</lastEdited><Created>2022-12-21T23:28:42.1949597</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>NICHOLAS</firstname><surname>SALE</surname><order>1</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>2</order></author><author><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><orcid>0000-0003-4252-0058</orcid><order>3</order></author></authors><documents><document><filename>62194__26507__828d55a887b24edd828a52af752a46b5.pdf</filename><originalFilename>62194_VoR.pdf</originalFilename><uploaded>2023-02-07T16:36:52.7513265</uploaded><type>Output</type><contentLength>1105692</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs><OutputDur><Id>161</Id><DataControllerName>Nicholas Sale</DataControllerName><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>10.5281/zen- odo.7060072</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807>
spelling 2023-03-30T13:40:43.5124840 v2 62194 2022-12-21 Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology 38dcae65204c8d1f606b578c99679c1f NICHOLAS SALE NICHOLAS SALE true false 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 03c4f93e1b94af60eb0c18c892b0c1d9 0000-0003-4252-0058 Jeffrey Giansiracusa Jeffrey Giansiracusa true false 2022-12-21 We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation length ν of the deconfinement phase transition. Journal Article Physical Review D 107 3 American Physical Society (APS) 2470-0010 2470-0029 7 2 2023 2023-02-07 10.1103/physrevd.107.034501 http://dx.doi.org/10.1103/physrevd.107.034501 COLLEGE NANME COLLEGE CODE Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) N. S. has been supported by a Swansea University Research Excellence Scholarship (SURES). J. G. was supported by Engineering and Physical Sciences Research Council Grant No. EP/R018472/1. B. L. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 813942. The work of B. L. was further supported in part by the UKRI Science and Technology Facilities Council (STFC) Consolidated Grant No. ST/T000813/1, by the Royal Society Wolfson Research Merit Grant No. WM170010, and by the Leverhulme Foundation Research Fellowship No. RF-2020-461\9. 2023-03-30T13:40:43.5124840 2022-12-21T23:28:42.1949597 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics NICHOLAS SALE 1 Biagio Lucini 0000-0001-8974-8266 2 Jeffrey Giansiracusa 0000-0003-4252-0058 3 62194__26507__828d55a887b24edd828a52af752a46b5.pdf 62194_VoR.pdf 2023-02-07T16:36:52.7513265 Output 1105692 application/pdf Version of Record true Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license true eng https://creativecommons.org/licenses/by/4.0/ 161 Nicholas Sale true 10.5281/zen- odo.7060072 false
title Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
spellingShingle Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
NICHOLAS SALE
Biagio Lucini
Jeffrey Giansiracusa
title_short Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
title_full Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
title_fullStr Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
title_full_unstemmed Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
title_sort Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
author_id_str_mv 38dcae65204c8d1f606b578c99679c1f
7e6fcfe060e07a351090e2a8aba363cf
03c4f93e1b94af60eb0c18c892b0c1d9
author_id_fullname_str_mv 38dcae65204c8d1f606b578c99679c1f_***_NICHOLAS SALE
7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini
03c4f93e1b94af60eb0c18c892b0c1d9_***_Jeffrey Giansiracusa
author NICHOLAS SALE
Biagio Lucini
Jeffrey Giansiracusa
author2 NICHOLAS SALE
Biagio Lucini
Jeffrey Giansiracusa
format Journal article
container_title Physical Review D
container_volume 107
container_issue 3
publishDate 2023
institution Swansea University
issn 2470-0010
2470-0029
doi_str_mv 10.1103/physrevd.107.034501
publisher American Physical Society (APS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1103/physrevd.107.034501
document_store_str 1
active_str 0
description We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation length ν of the deconfinement phase transition.
published_date 2023-02-07T20:18:22Z
_version_ 1821347469174243328
score 11.04748