Journal article 550 views 61 downloads
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology
Physical Review D, Volume: 107, Issue: 3
Swansea University Authors: NICHOLAS SALE, Biagio Lucini , Jeffrey Giansiracusa
-
PDF | Version of Record
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license
Download (1.05MB)
DOI (Published version): 10.1103/physrevd.107.034501
Abstract
We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using tw...
Published in: | Physical Review D |
---|---|
ISSN: | 2470-0010 2470-0029 |
Published: |
American Physical Society (APS)
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62194 |
first_indexed |
2023-01-11T16:18:50Z |
---|---|
last_indexed |
2023-03-31T03:20:01Z |
id |
cronfa62194 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><datestamp>2023-03-30T13:40:43.5124840</datestamp><bib-version>v2</bib-version><id>62194</id><entry>2022-12-21</entry><title>Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology</title><swanseaauthors><author><sid>38dcae65204c8d1f606b578c99679c1f</sid><firstname>NICHOLAS</firstname><surname>SALE</surname><name>NICHOLAS SALE</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>03c4f93e1b94af60eb0c18c892b0c1d9</sid><ORCID>0000-0003-4252-0058</ORCID><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><name>Jeffrey Giansiracusa</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-12-21</date><abstract>We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation length ν of the deconfinement phase transition.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>107</volume><journalNumber>3</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-07</publishedDate><doi>10.1103/physrevd.107.034501</doi><url>http://dx.doi.org/10.1103/physrevd.107.034501</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>N. S. has been supported by
a Swansea University Research Excellence Scholarship
(SURES). J. G. was supported by Engineering and Physical
Sciences Research Council Grant No. EP/R018472/1. B. L.
received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program under Grant Agreement
No. 813942. The work of B. L. was further supported in
part by the UKRI Science and Technology Facilities
Council (STFC) Consolidated Grant No. ST/T000813/1,
by the Royal Society Wolfson Research Merit Grant
No. WM170010, and by the Leverhulme Foundation
Research Fellowship No. RF-2020-461\9.</funders><projectreference/><lastEdited>2023-03-30T13:40:43.5124840</lastEdited><Created>2022-12-21T23:28:42.1949597</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>NICHOLAS</firstname><surname>SALE</surname><order>1</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>2</order></author><author><firstname>Jeffrey</firstname><surname>Giansiracusa</surname><orcid>0000-0003-4252-0058</orcid><order>3</order></author></authors><documents><document><filename>62194__26507__828d55a887b24edd828a52af752a46b5.pdf</filename><originalFilename>62194_VoR.pdf</originalFilename><uploaded>2023-02-07T16:36:52.7513265</uploaded><type>Output</type><contentLength>1105692</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs><OutputDur><Id>161</Id><DataControllerName>Nicholas Sale</DataControllerName><IsDataAvailableOnline>true</IsDataAvailableOnline><DataNotAvailableOnlineReasonId xsi:nil="true"/><DurUrl>10.5281/zen- odo.7060072</DurUrl><IsDurRestrictions>false</IsDurRestrictions><DurRestrictionReasonId xsi:nil="true"/><DurEmbargoDate xsi:nil="true"/></OutputDur></OutputDurs></rfc1807> |
spelling |
2023-03-30T13:40:43.5124840 v2 62194 2022-12-21 Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology 38dcae65204c8d1f606b578c99679c1f NICHOLAS SALE NICHOLAS SALE true false 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 03c4f93e1b94af60eb0c18c892b0c1d9 0000-0003-4252-0058 Jeffrey Giansiracusa Jeffrey Giansiracusa true false 2022-12-21 We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation length ν of the deconfinement phase transition. Journal Article Physical Review D 107 3 American Physical Society (APS) 2470-0010 2470-0029 7 2 2023 2023-02-07 10.1103/physrevd.107.034501 http://dx.doi.org/10.1103/physrevd.107.034501 COLLEGE NANME COLLEGE CODE Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) N. S. has been supported by a Swansea University Research Excellence Scholarship (SURES). J. G. was supported by Engineering and Physical Sciences Research Council Grant No. EP/R018472/1. B. L. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 813942. The work of B. L. was further supported in part by the UKRI Science and Technology Facilities Council (STFC) Consolidated Grant No. ST/T000813/1, by the Royal Society Wolfson Research Merit Grant No. WM170010, and by the Leverhulme Foundation Research Fellowship No. RF-2020-461\9. 2023-03-30T13:40:43.5124840 2022-12-21T23:28:42.1949597 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics NICHOLAS SALE 1 Biagio Lucini 0000-0001-8974-8266 2 Jeffrey Giansiracusa 0000-0003-4252-0058 3 62194__26507__828d55a887b24edd828a52af752a46b5.pdf 62194_VoR.pdf 2023-02-07T16:36:52.7513265 Output 1105692 application/pdf Version of Record true Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license true eng https://creativecommons.org/licenses/by/4.0/ 161 Nicholas Sale true 10.5281/zen- odo.7060072 false |
title |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology |
spellingShingle |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology NICHOLAS SALE Biagio Lucini Jeffrey Giansiracusa |
title_short |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology |
title_full |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology |
title_fullStr |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology |
title_full_unstemmed |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology |
title_sort |
Probing center vortices and deconfinement in SU(2) lattice gauge theory with persistent homology |
author_id_str_mv |
38dcae65204c8d1f606b578c99679c1f 7e6fcfe060e07a351090e2a8aba363cf 03c4f93e1b94af60eb0c18c892b0c1d9 |
author_id_fullname_str_mv |
38dcae65204c8d1f606b578c99679c1f_***_NICHOLAS SALE 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini 03c4f93e1b94af60eb0c18c892b0c1d9_***_Jeffrey Giansiracusa |
author |
NICHOLAS SALE Biagio Lucini Jeffrey Giansiracusa |
author2 |
NICHOLAS SALE Biagio Lucini Jeffrey Giansiracusa |
format |
Journal article |
container_title |
Physical Review D |
container_volume |
107 |
container_issue |
3 |
publishDate |
2023 |
institution |
Swansea University |
issn |
2470-0010 2470-0029 |
doi_str_mv |
10.1103/physrevd.107.034501 |
publisher |
American Physical Society (APS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.1103/physrevd.107.034501 |
document_store_str |
1 |
active_str |
0 |
description |
We investigate the use of persistent homology, a tool from topological data analysis, as a means to detect and quantitatively describe center vortices in SU(2) lattice gauge theory in a gauge-invariant manner. The sensitivity of our method to vortices in the deconfined phase is confirmed by using twisted boundary conditions which inspires the definition of a new phase indicator for the deconfinement phase transition. We also construct a phase indicator without reference to twisted boundary conditions using a simple k-nearest neighbours classifier. Finite-size scaling analyses of both persistence-based indicators yield accurate estimates of the critical β and critical exponent of correlation length ν of the deconfinement phase transition. |
published_date |
2023-02-07T20:18:22Z |
_version_ |
1821347469174243328 |
score |
11.04748 |