No Cover Image

Journal article 478 views

Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model

Qiao Wang, Qiang Yue, Wei Zhou, Yuntian Feng Orcid Logo, Xiaolin Chang

Applied Mathematical Modelling, Volume: 117, Pages: 162 - 196

Swansea University Author: Yuntian Feng Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

Many phase-field models have been developed in recent years to captue different fracture modes from tensional to shear, tensional-shear, and compressive-shear fractures. However, there seems no phase-field model that can simulate the tensional, shear, tensional-shear, and compressive-shear fractures...

Full description

Published in: Applied Mathematical Modelling
ISSN: 0307-904X
Published: Elsevier BV 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62173
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-12-15T10:00:59Z
last_indexed 2023-01-13T19:23:27Z
id cronfa62173
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-30T13:27:59.4579279</datestamp><bib-version>v2</bib-version><id>62173</id><entry>2022-12-15</entry><title>Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-12-15</date><deptcode>CIVL</deptcode><abstract>Many phase-field models have been developed in recent years to captue different fracture modes from tensional to shear, tensional-shear, and compressive-shear fractures. However, there seems no phase-field model that can simulate the tensional, shear, tensional-shear, and compressive-shear fractures at the same time under complex stress states. In this paper, a unified phase-field model is proposed in the framework of the original phase-field theory. A universal fracture criterion, that can predict both tensional-shear and compressive-shear fractures under complex stress states is embedded in the proposed phase-field, and the failure compression strength is introduced to consider the fracture under a compressive stress state. Therefore, the crack direction can be directly determined from the universal fracture criterion. The strain energy of undamaged configuration is decomposed into three parts, the tensional/compressive part, the shear part, and the rest part. The tensional/compressive and shear parts can be degraded by different degradation functions or the same degradation function. Cohesive fracture models with general softening laws and the classical brittle fracture model can be used in the proposed model, and the length scale has much less influence on the global response if cohesive fracture models with general softening laws are applied. Numerical examples show that the proposed model has the ability to simulate both the tensional-shear and compressive-shear fractures in rock-like materials and the results are in good agreement with the experiments.</abstract><type>Journal Article</type><journal>Applied Mathematical Modelling</journal><volume>117</volume><journalNumber/><paginationStart>162</paginationStart><paginationEnd>196</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0307-904X</issnPrint><issnElectronic/><keywords>Phase-field model; Tensional-shear and compressive-shear fractures; Unified phase-field theory; Universal fracture criterion; Complex stress states</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-05-01</publishedDate><doi>10.1016/j.apm.2022.12.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Financial support for the project from the National Key R&amp;D Program of China (No. 2022YFC3005504) and National Natural Science Foundation of China (No. 51979207, No. U2040223) is acknowledged.</funders><projectreference/><lastEdited>2022-12-30T13:27:59.4579279</lastEdited><Created>2022-12-15T09:57:26.9755197</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Qiao</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Qiang</firstname><surname>Yue</surname><order>2</order></author><author><firstname>Wei</firstname><surname>Zhou</surname><order>3</order></author><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>4</order></author><author><firstname>Xiaolin</firstname><surname>Chang</surname><order>5</order></author></authors><documents><document><filename>Under embargo</filename><originalFilename>Under embargo</originalFilename><uploaded>2022-12-15T10:00:40.8954358</uploaded><type>Output</type><contentLength>2162908</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-12-09T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-30T13:27:59.4579279 v2 62173 2022-12-15 Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 2022-12-15 CIVL Many phase-field models have been developed in recent years to captue different fracture modes from tensional to shear, tensional-shear, and compressive-shear fractures. However, there seems no phase-field model that can simulate the tensional, shear, tensional-shear, and compressive-shear fractures at the same time under complex stress states. In this paper, a unified phase-field model is proposed in the framework of the original phase-field theory. A universal fracture criterion, that can predict both tensional-shear and compressive-shear fractures under complex stress states is embedded in the proposed phase-field, and the failure compression strength is introduced to consider the fracture under a compressive stress state. Therefore, the crack direction can be directly determined from the universal fracture criterion. The strain energy of undamaged configuration is decomposed into three parts, the tensional/compressive part, the shear part, and the rest part. The tensional/compressive and shear parts can be degraded by different degradation functions or the same degradation function. Cohesive fracture models with general softening laws and the classical brittle fracture model can be used in the proposed model, and the length scale has much less influence on the global response if cohesive fracture models with general softening laws are applied. Numerical examples show that the proposed model has the ability to simulate both the tensional-shear and compressive-shear fractures in rock-like materials and the results are in good agreement with the experiments. Journal Article Applied Mathematical Modelling 117 162 196 Elsevier BV 0307-904X Phase-field model; Tensional-shear and compressive-shear fractures; Unified phase-field theory; Universal fracture criterion; Complex stress states 1 5 2023 2023-05-01 10.1016/j.apm.2022.12.006 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University Financial support for the project from the National Key R&D Program of China (No. 2022YFC3005504) and National Natural Science Foundation of China (No. 51979207, No. U2040223) is acknowledged. 2022-12-30T13:27:59.4579279 2022-12-15T09:57:26.9755197 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Qiao Wang 1 Qiang Yue 2 Wei Zhou 3 Yuntian Feng 0000-0002-6396-8698 4 Xiaolin Chang 5 Under embargo Under embargo 2022-12-15T10:00:40.8954358 Output 2162908 application/pdf Accepted Manuscript true 2023-12-09T00:00:00.0000000 ©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
spellingShingle Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
Yuntian Feng
title_short Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
title_full Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
title_fullStr Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
title_full_unstemmed Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
title_sort Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model
author_id_str_mv d66794f9c1357969a5badf654f960275
author_id_fullname_str_mv d66794f9c1357969a5badf654f960275_***_Yuntian Feng
author Yuntian Feng
author2 Qiao Wang
Qiang Yue
Wei Zhou
Yuntian Feng
Xiaolin Chang
format Journal article
container_title Applied Mathematical Modelling
container_volume 117
container_start_page 162
publishDate 2023
institution Swansea University
issn 0307-904X
doi_str_mv 10.1016/j.apm.2022.12.006
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 0
active_str 0
description Many phase-field models have been developed in recent years to captue different fracture modes from tensional to shear, tensional-shear, and compressive-shear fractures. However, there seems no phase-field model that can simulate the tensional, shear, tensional-shear, and compressive-shear fractures at the same time under complex stress states. In this paper, a unified phase-field model is proposed in the framework of the original phase-field theory. A universal fracture criterion, that can predict both tensional-shear and compressive-shear fractures under complex stress states is embedded in the proposed phase-field, and the failure compression strength is introduced to consider the fracture under a compressive stress state. Therefore, the crack direction can be directly determined from the universal fracture criterion. The strain energy of undamaged configuration is decomposed into three parts, the tensional/compressive part, the shear part, and the rest part. The tensional/compressive and shear parts can be degraded by different degradation functions or the same degradation function. Cohesive fracture models with general softening laws and the classical brittle fracture model can be used in the proposed model, and the length scale has much less influence on the global response if cohesive fracture models with general softening laws are applied. Numerical examples show that the proposed model has the ability to simulate both the tensional-shear and compressive-shear fractures in rock-like materials and the results are in good agreement with the experiments.
published_date 2023-05-01T04:21:35Z
_version_ 1763754425045745664
score 11.013686