No Cover Image

E-Thesis 744 views

Biomaterial-based transdermal and implantable vaccine delivery systems for cancer immunotherapy / SAUL MICHUE-SEIJAS

Swansea University Author: SAUL MICHUE-SEIJAS

  • Michue-Seijas_Saul_Ph_Thesis_Final_Embargoed_Redacted_Signature.pdf

    PDF | E-Thesis – open access

    Copyright: The author, Saul Michue Seijas, 2022.

    Download (11.5MB)

DOI (Published version): 10.23889/SUthesis.61815

Abstract

Activating the immune system to target cancer cells is one of the most promising and novel therapeutic approaches for cancer treatment. It offers the potential for long-term protection and limiting off-target cytotoxicity in healthy tissue, which are some of the major drawbacks in chemotherapy. Howe...

Full description

Published: Swansea 2022
Institution: Swansea University
Degree level: Doctoral
Degree name: Ph.D
Supervisor: Mareque-Rivas, Juan
URI: https://cronfa.swan.ac.uk/Record/cronfa61815
Abstract: Activating the immune system to target cancer cells is one of the most promising and novel therapeutic approaches for cancer treatment. It offers the potential for long-term protection and limiting off-target cytotoxicity in healthy tissue, which are some of the major drawbacks in chemotherapy. However, limited patient response and autoimmune adverse effects remain current challenges in cancer immunotherapy. The administration of immunotherapies and combination therapies into the immune cell-rich dermal skin region using biodegradable microneedles or into the tumour resection site using implants could overcome these limitations by stimulating a local and controlled therapeutic response. This thesis presents the development and functionalisation of biomaterial-based microneedles and implantable devices to promote the sustained delivery of a variety of immunomodulatory drugs and anticancer agents into the microenvironment of the tumour aiming to locally modulate the immune response. Specifically, the covalent functionalisation of hyaluronic acid to a clinically investigated IDO inhibitor, 1-methyltryptophan, was explored as well as the development of a variety of immunomodulatory nano- and microparticle systems including: (i) self-assembled hyaluronic acid nanoparticles incorporating the clinically used immune checkpoint inhibitor, anti-PD-L1; (ii) immunostimulatory vaccine functionalised iron oxide nanoparticles, (iii) a Pt(IV) prodrug decorated iron oxide nanoparticle system for immunochemotherapy; and (iv) multimodal biosilica-based constructs showing intrinsic peroxidase-like activity and biosensor applications. The incorporation of some of these systems into microneedles and implantable devices demonstrated gradual drug release under physiological conditions and retention of functional activity in vitro using different murine and human cancer cell models. The experimental results highlight the potential of these microneedles and implants as sustained delivery platforms for enhanced cancer immunotherapy and combination therapy.
Item Description: ORCiD identifier: https://orcid.org/0000-0002-3633-3283
Keywords: Cancer immunotherapy, nanomedicine, microneedles and implants
College: Faculty of Science and Engineering