Journal article 584 views
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation
Construction and Building Materials, Volume: 323, Start page: 126580
Swansea University Author: Yue Hou
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.conbuildmat.2022.126580
Abstract
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation
Published in: | Construction and Building Materials |
---|---|
ISSN: | 0950-0618 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61797 |
first_indexed |
2022-11-28T15:56:08Z |
---|---|
last_indexed |
2023-01-13T19:22:47Z |
id |
cronfa61797 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-11-28T15:56:10.1642291</datestamp><bib-version>v2</bib-version><id>61797</id><entry>2022-11-07</entry><title>Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation</title><swanseaauthors><author><sid>92bf566c65343cb3ee04ad963eacf31b</sid><ORCID>0000-0002-4334-2620</ORCID><firstname>Yue</firstname><surname>Hou</surname><name>Yue Hou</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-07</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>Construction and Building Materials</journal><volume>323</volume><journalNumber/><paginationStart>126580</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0950-0618</issnPrint><issnElectronic/><keywords>Virtual material design; Compressive strength prediction; Data augmentation; Deep learning; Lightweight model</keywords><publishedDay>14</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-14</publishedDate><doi>10.1016/j.conbuildmat.2022.126580</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by the International Research Cooperation Seed Fund of Beijing University of Technology (No. 2021A05), Opening project fund of Materials Service Safety Assessment Facilities (MSAF-2021-109), Talent Promotion Program by Beijing Association for Science and Technology, and the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds (Scientific Research Categories) of Beijing City.</funders><projectreference/><lastEdited>2022-11-28T15:56:10.1642291</lastEdited><Created>2022-11-07T19:20:04.2931240</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Ning</firstname><surname>Chen</surname><order>1</order></author><author><firstname>Shibo</firstname><surname>Zhao</surname><order>2</order></author><author><firstname>Zhiwei</firstname><surname>Gao</surname><orcid>0000-0002-5501-9855</orcid><order>3</order></author><author><firstname>Dawei</firstname><surname>Wang</surname><order>4</order></author><author><firstname>Pengfei</firstname><surname>Liu</surname><order>5</order></author><author><firstname>Markus</firstname><surname>Oeser</surname><order>6</order></author><author><firstname>Yue</firstname><surname>Hou</surname><orcid>0000-0002-4334-2620</orcid><order>7</order></author><author><firstname>Linbing</firstname><surname>Wang</surname><order>8</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-11-28T15:56:10.1642291 v2 61797 2022-11-07 Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation 92bf566c65343cb3ee04ad963eacf31b 0000-0002-4334-2620 Yue Hou Yue Hou true false 2022-11-07 ACEM Journal Article Construction and Building Materials 323 126580 Elsevier BV 0950-0618 Virtual material design; Compressive strength prediction; Data augmentation; Deep learning; Lightweight model 14 3 2022 2022-03-14 10.1016/j.conbuildmat.2022.126580 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University This work was supported by the International Research Cooperation Seed Fund of Beijing University of Technology (No. 2021A05), Opening project fund of Materials Service Safety Assessment Facilities (MSAF-2021-109), Talent Promotion Program by Beijing Association for Science and Technology, and the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds (Scientific Research Categories) of Beijing City. 2022-11-28T15:56:10.1642291 2022-11-07T19:20:04.2931240 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Ning Chen 1 Shibo Zhao 2 Zhiwei Gao 0000-0002-5501-9855 3 Dawei Wang 4 Pengfei Liu 5 Markus Oeser 6 Yue Hou 0000-0002-4334-2620 7 Linbing Wang 8 |
title |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation |
spellingShingle |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation Yue Hou |
title_short |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation |
title_full |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation |
title_fullStr |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation |
title_full_unstemmed |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation |
title_sort |
Virtual mix design: Prediction of compressive strength of concrete with industrial wastes using deep data augmentation |
author_id_str_mv |
92bf566c65343cb3ee04ad963eacf31b |
author_id_fullname_str_mv |
92bf566c65343cb3ee04ad963eacf31b_***_Yue Hou |
author |
Yue Hou |
author2 |
Ning Chen Shibo Zhao Zhiwei Gao Dawei Wang Pengfei Liu Markus Oeser Yue Hou Linbing Wang |
format |
Journal article |
container_title |
Construction and Building Materials |
container_volume |
323 |
container_start_page |
126580 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0950-0618 |
doi_str_mv |
10.1016/j.conbuildmat.2022.126580 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
0 |
active_str |
0 |
published_date |
2022-03-14T20:29:34Z |
_version_ |
1821438771131842560 |
score |
11.047609 |