No Cover Image

Journal article 630 views 66 downloads

Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria

Henrique Machado, Eva C. Sonnenschein Orcid Logo, Jette Melchiorsen, Lone Gram

BMC Genomics, Volume: 16, Issue: 1

Swansea University Author: Eva C. Sonnenschein Orcid Logo

  • 61738_VoR.pdf

    PDF | Version of Record

    © 2015 Machado et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

    Download (1.02MB)

Abstract

BackgroundAntibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive...

Full description

Published in: BMC Genomics
ISSN: 1471-2164
Published: Springer Science and Business Media LLC 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61738
Abstract: BackgroundAntibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters.ResultsIndependently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known.ConclusionsUtilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner – an approach that will facilitate natural product discovery in the future.
Keywords: AntiSMASH; Genome mining; Pseudoalteromonas; Secondary metabolites; Vibrionaceae
College: Faculty of Science and Engineering
Issue: 1