Journal article 438 views 39 downloads
High optical storage density using three-dimensional hybrid nanostructures based on machine learning
Optics and Lasers in Engineering, Volume: 161, Start page: 107347
Swansea University Author: Lijie Li
-
PDF | Accepted Manuscript
©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (1.46MB)
DOI (Published version): 10.1016/j.optlaseng.2022.107347
Abstract
High optical storage density using three-dimensional hybrid nanostructures based on machine learning
Published in: | Optics and Lasers in Engineering |
---|---|
ISSN: | 0143-8166 |
Published: |
Elsevier BV
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61679 |
first_indexed |
2022-10-31T23:45:53Z |
---|---|
last_indexed |
2024-11-14T12:19:31Z |
id |
cronfa61679 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-07-17T15:30:35.1445163</datestamp><bib-version>v2</bib-version><id>61679</id><entry>2022-10-31</entry><title>High optical storage density using three-dimensional hybrid nanostructures based on machine learning</title><swanseaauthors><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-10-31</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>Optics and Lasers in Engineering</journal><volume>161</volume><journalNumber/><paginationStart>107347</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0143-8166</issnPrint><issnElectronic/><keywords>High density optical storage; Nanostructures; Deep learning; 3D lithography</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-01</publishedDate><doi>10.1016/j.optlaseng.2022.107347</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by the National Key Research and Development Program of China, under Grant No. 2019YFB1704600; the Hubei Provincial Natural Science Foundation of China, under Grant No. 2020CFA032.</funders><projectreference/><lastEdited>2024-07-17T15:30:35.1445163</lastEdited><Created>2022-10-31T10:46:55.4216951</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Dekun</firstname><surname>Yang</surname><order>1</order></author><author><firstname>Zhidan</firstname><surname>Lei</surname><order>2</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>3</order></author><author><firstname>Wei</firstname><surname>Shen</surname><order>4</order></author><author><firstname>Hui</firstname><surname>Li</surname><order>5</order></author><author><firstname>Chengqun</firstname><surname>Gui</surname><order>6</order></author><author><firstname>Yi</firstname><surname>Song</surname><orcid>0000-0001-9632-404x</orcid><order>7</order></author></authors><documents><document><filename>61679__25618__9fcfe6c0aee544c48b20b187d2037571.pdf</filename><originalFilename>manuscript-revised_accepted.pdf</originalFilename><uploaded>2022-10-31T23:45:38.9514995</uploaded><type>Output</type><contentLength>1535474</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-10-28T00:00:00.0000000</embargoDate><documentNotes>©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-07-17T15:30:35.1445163 v2 61679 2022-10-31 High optical storage density using three-dimensional hybrid nanostructures based on machine learning ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 2022-10-31 ACEM Journal Article Optics and Lasers in Engineering 161 107347 Elsevier BV 0143-8166 High density optical storage; Nanostructures; Deep learning; 3D lithography 1 2 2023 2023-02-01 10.1016/j.optlaseng.2022.107347 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University This work was supported by the National Key Research and Development Program of China, under Grant No. 2019YFB1704600; the Hubei Provincial Natural Science Foundation of China, under Grant No. 2020CFA032. 2024-07-17T15:30:35.1445163 2022-10-31T10:46:55.4216951 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Dekun Yang 1 Zhidan Lei 2 Lijie Li 0000-0003-4630-7692 3 Wei Shen 4 Hui Li 5 Chengqun Gui 6 Yi Song 0000-0001-9632-404x 7 61679__25618__9fcfe6c0aee544c48b20b187d2037571.pdf manuscript-revised_accepted.pdf 2022-10-31T23:45:38.9514995 Output 1535474 application/pdf Accepted Manuscript true 2023-10-28T00:00:00.0000000 ©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning |
spellingShingle |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning Lijie Li |
title_short |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning |
title_full |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning |
title_fullStr |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning |
title_full_unstemmed |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning |
title_sort |
High optical storage density using three-dimensional hybrid nanostructures based on machine learning |
author_id_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6 |
author_id_fullname_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li |
author |
Lijie Li |
author2 |
Dekun Yang Zhidan Lei Lijie Li Wei Shen Hui Li Chengqun Gui Yi Song |
format |
Journal article |
container_title |
Optics and Lasers in Engineering |
container_volume |
161 |
container_start_page |
107347 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0143-8166 |
doi_str_mv |
10.1016/j.optlaseng.2022.107347 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
published_date |
2023-02-01T08:16:15Z |
_version_ |
1821392634001752064 |
score |
11.047501 |