No Cover Image

Journal article 431 views 102 downloads

Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells

Agustín Bou Orcid Logo, Adam Pockett, Héctor Cruanyes, Dimitrios Raptis, Trystan Watson Orcid Logo, Matt Carnie Orcid Logo, Juan Bisquert Orcid Logo

APL Materials, Volume: 10, Issue: 5, Start page: 051104

Swansea University Authors: Adam Pockett, Dimitrios Raptis, Trystan Watson Orcid Logo, Matt Carnie Orcid Logo

  • 61399.pdf

    PDF | Version of Record

    © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

    Download (5.68MB)

Check full text

DOI (Published version): 10.1063/5.0087705

Abstract

Impedance Spectroscopy (IS) has proven to be a powerful tool for the extraction of significant electronic parameters in a wide variety of electrochemical systems, such as solar cells or electrochemical cells. However, this has not been the case with perovskite solar cells, which have the particular...

Full description

Published in: APL Materials
ISSN: 2166-532X
Published: AIP Publishing 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61399
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-10-01T14:46:39Z
last_indexed 2023-01-13T19:22:09Z
id cronfa61399
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>61399</id><entry>2022-10-01</entry><title>Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells</title><swanseaauthors><author><sid>de06433fccc0514dcf45aa9d1fc5c60f</sid><firstname>Adam</firstname><surname>Pockett</surname><name>Adam Pockett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>75c81a7d972e97c42200ab0ebfa21908</sid><firstname>Dimitrios</firstname><surname>Raptis</surname><name>Dimitrios Raptis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-10-01</date><deptcode>EAAS</deptcode><abstract>Impedance Spectroscopy (IS) has proven to be a powerful tool for the extraction of significant electronic parameters in a wide variety of electrochemical systems, such as solar cells or electrochemical cells. However, this has not been the case with perovskite solar cells, which have the particular ionic-electronic combined transport that complicates the interpretation of experimental results due to an overlapping of different phenomena with similar characteristic frequencies. Therefore, the diffusion of electrons is indistinguishable on IS, and there appears the need to use other small perturbation experimental techniques. Here, we show that voltage-modulated measurements do not provide the same information as light-modulated techniques. We investigate the responses of perovskite solar cells to IS, Intensity-Modulated Photocurrent Spectroscopy (IMPS) and Intensity-Modulated Photovoltage Spectroscopy (IMVS). We find that the perturbations by light instead of voltage can uncover the electronic transport from other phenomena, resulting in a loop in the high-frequency region of the complex planes of the IMPS and IMVS spectra. The calculated responses are endorsed by the experimental data that reproduce the expected high frequency loops. Finally, we discuss the requirement to use a combination of small perturbation techniques for successful estimation of diffusion parameters of perovskite solar cells.We thank Generalitat Valenciana for Project No. PROMETEO/2020/028. A.B. and H.C. acknowledge FPI studentship funding from the Ministerio de Ciencia e Innovación of Spain (Grant Nos. BES-2017-080351 and PRE2020-095374).</abstract><type>Journal Article</type><journal>APL Materials</journal><volume>10</volume><journalNumber>5</journalNumber><paginationStart>051104</paginationStart><paginationEnd/><publisher>AIP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2166-532X</issnElectronic><keywords/><publishedDay>4</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-05-04</publishedDate><doi>10.1063/5.0087705</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>We thank Generalitat Valenciana for Project No. PROMETEO /2020/028. A.B. and H.C. acknowledge FPI studentship funding from the Ministerio de Ciencia e Innovación of Spain (Grant Nos. BES-2017-080351 and PRE2020-095374)</funders><projectreference/><lastEdited>2024-10-07T15:48:26.7599752</lastEdited><Created>2022-10-01T15:43:15.3290665</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Agustín</firstname><surname>Bou</surname><orcid>0000-0002-7535-5063</orcid><order>1</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>2</order></author><author><firstname>Héctor</firstname><surname>Cruanyes</surname><order>3</order></author><author><firstname>Dimitrios</firstname><surname>Raptis</surname><order>4</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>5</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>6</order></author><author><firstname>Juan</firstname><surname>Bisquert</surname><orcid>0000-0003-4987-4887</orcid><order>7</order></author></authors><documents><document><filename>61399__25279__5e2359585a084fb8b2b6483c8c59a67a.pdf</filename><originalFilename>61399.pdf</originalFilename><uploaded>2022-10-01T15:46:18.8695512</uploaded><type>Output</type><contentLength>5951407</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling v2 61399 2022-10-01 Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells de06433fccc0514dcf45aa9d1fc5c60f Adam Pockett Adam Pockett true false 75c81a7d972e97c42200ab0ebfa21908 Dimitrios Raptis Dimitrios Raptis true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2022-10-01 EAAS Impedance Spectroscopy (IS) has proven to be a powerful tool for the extraction of significant electronic parameters in a wide variety of electrochemical systems, such as solar cells or electrochemical cells. However, this has not been the case with perovskite solar cells, which have the particular ionic-electronic combined transport that complicates the interpretation of experimental results due to an overlapping of different phenomena with similar characteristic frequencies. Therefore, the diffusion of electrons is indistinguishable on IS, and there appears the need to use other small perturbation experimental techniques. Here, we show that voltage-modulated measurements do not provide the same information as light-modulated techniques. We investigate the responses of perovskite solar cells to IS, Intensity-Modulated Photocurrent Spectroscopy (IMPS) and Intensity-Modulated Photovoltage Spectroscopy (IMVS). We find that the perturbations by light instead of voltage can uncover the electronic transport from other phenomena, resulting in a loop in the high-frequency region of the complex planes of the IMPS and IMVS spectra. The calculated responses are endorsed by the experimental data that reproduce the expected high frequency loops. Finally, we discuss the requirement to use a combination of small perturbation techniques for successful estimation of diffusion parameters of perovskite solar cells.We thank Generalitat Valenciana for Project No. PROMETEO/2020/028. A.B. and H.C. acknowledge FPI studentship funding from the Ministerio de Ciencia e Innovación of Spain (Grant Nos. BES-2017-080351 and PRE2020-095374). Journal Article APL Materials 10 5 051104 AIP Publishing 2166-532X 4 5 2022 2022-05-04 10.1063/5.0087705 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee We thank Generalitat Valenciana for Project No. PROMETEO /2020/028. A.B. and H.C. acknowledge FPI studentship funding from the Ministerio de Ciencia e Innovación of Spain (Grant Nos. BES-2017-080351 and PRE2020-095374) 2024-10-07T15:48:26.7599752 2022-10-01T15:43:15.3290665 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Agustín Bou 0000-0002-7535-5063 1 Adam Pockett 2 Héctor Cruanyes 3 Dimitrios Raptis 4 Trystan Watson 0000-0002-8015-1436 5 Matt Carnie 0000-0002-4232-1967 6 Juan Bisquert 0000-0003-4987-4887 7 61399__25279__5e2359585a084fb8b2b6483c8c59a67a.pdf 61399.pdf 2022-10-01T15:46:18.8695512 Output 5951407 application/pdf Version of Record true © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license true eng http://creativecommons.org/licenses/by/4.0/
title Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
spellingShingle Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
Adam Pockett
Dimitrios Raptis
Trystan Watson
Matt Carnie
title_short Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
title_full Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
title_fullStr Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
title_full_unstemmed Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
title_sort Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells
author_id_str_mv de06433fccc0514dcf45aa9d1fc5c60f
75c81a7d972e97c42200ab0ebfa21908
a210327b52472cfe8df9b8108d661457
73b367694366a646b90bb15db32bb8c0
author_id_fullname_str_mv de06433fccc0514dcf45aa9d1fc5c60f_***_Adam Pockett
75c81a7d972e97c42200ab0ebfa21908_***_Dimitrios Raptis
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
author Adam Pockett
Dimitrios Raptis
Trystan Watson
Matt Carnie
author2 Agustín Bou
Adam Pockett
Héctor Cruanyes
Dimitrios Raptis
Trystan Watson
Matt Carnie
Juan Bisquert
format Journal article
container_title APL Materials
container_volume 10
container_issue 5
container_start_page 051104
publishDate 2022
institution Swansea University
issn 2166-532X
doi_str_mv 10.1063/5.0087705
publisher AIP Publishing
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Impedance Spectroscopy (IS) has proven to be a powerful tool for the extraction of significant electronic parameters in a wide variety of electrochemical systems, such as solar cells or electrochemical cells. However, this has not been the case with perovskite solar cells, which have the particular ionic-electronic combined transport that complicates the interpretation of experimental results due to an overlapping of different phenomena with similar characteristic frequencies. Therefore, the diffusion of electrons is indistinguishable on IS, and there appears the need to use other small perturbation experimental techniques. Here, we show that voltage-modulated measurements do not provide the same information as light-modulated techniques. We investigate the responses of perovskite solar cells to IS, Intensity-Modulated Photocurrent Spectroscopy (IMPS) and Intensity-Modulated Photovoltage Spectroscopy (IMVS). We find that the perturbations by light instead of voltage can uncover the electronic transport from other phenomena, resulting in a loop in the high-frequency region of the complex planes of the IMPS and IMVS spectra. The calculated responses are endorsed by the experimental data that reproduce the expected high frequency loops. Finally, we discuss the requirement to use a combination of small perturbation techniques for successful estimation of diffusion parameters of perovskite solar cells.We thank Generalitat Valenciana for Project No. PROMETEO/2020/028. A.B. and H.C. acknowledge FPI studentship funding from the Ministerio de Ciencia e Innovación of Spain (Grant Nos. BES-2017-080351 and PRE2020-095374).
published_date 2022-05-04T15:48:25Z
_version_ 1812267013408555008
score 11.036334