Journal article 1353 views 421 downloads
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
ACS Applied Energy Materials, Volume: 5, Issue: 5, Pages: 5974 - 5982
Swansea University Authors:
Michael Spence, Adam Pockett, Zhengfei Wei, Trystan Watson , Matt Carnie
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License
Download (7.7MB)
DOI (Published version): 10.1021/acsaem.2c00361
Abstract
Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tande...
| Published in: | ACS Applied Energy Materials |
|---|---|
| ISSN: | 2574-0962 2574-0962 |
| Published: |
American Chemical Society (ACS)
2022
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa61009 |
| first_indexed |
2022-09-02T10:41:05Z |
|---|---|
| last_indexed |
2023-01-13T19:21:33Z |
| id |
cronfa61009 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-09-02T11:43:22.4976122</datestamp><bib-version>v2</bib-version><id>61009</id><entry>2022-09-02</entry><title>A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells</title><swanseaauthors><author><sid>801454eb7d42eeb5165b73fb362381ee</sid><firstname>Michael</firstname><surname>Spence</surname><name>Michael Spence</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>de06433fccc0514dcf45aa9d1fc5c60f</sid><firstname>Adam</firstname><surname>Pockett</surname><name>Adam Pockett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e4ae52ae9b63b7b6da834c460ee3bb2d</sid><ORCID/><firstname>Zhengfei</firstname><surname>Wei</surname><name>Zhengfei Wei</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-02</date><abstract>Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs─lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3–5% increase in integrated JSC in each sub-cell of a silicon-perovskite tandem structure.</abstract><type>Journal Article</type><journal>ACS Applied Energy Materials</journal><volume>5</volume><journalNumber>5</journalNumber><paginationStart>5974</paginationStart><paginationEnd>5982</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2574-0962</issnPrint><issnElectronic>2574-0962</issnElectronic><keywords/><publishedDay>23</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-05-23</publishedDate><doi>10.1021/acsaem.2c00361</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>European Regional Development Fund - SPARC II; Engineering and Physical Sciences Research Council - EP/N020863/1, EP/S513714/1, EP/T028513/1</funders><projectreference/><lastEdited>2022-09-02T11:43:22.4976122</lastEdited><Created>2022-09-02T11:37:54.4565066</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Michael</firstname><surname>Spence</surname><order>1</order></author><author><firstname>Richard</firstname><surname>Hammond</surname><order>2</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>3</order></author><author><firstname>Zhengfei</firstname><surname>Wei</surname><orcid/><order>4</order></author><author><firstname>Andrew</firstname><surname>Johnson</surname><order>5</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>6</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>7</order></author></authors><documents><document><filename>61009__25067__4ba570fa49cd4fde988a986fc8f7680f.pdf</filename><originalFilename>61009_VoR.pdf</originalFilename><uploaded>2022-09-02T11:42:03.6823508</uploaded><type>Output</type><contentLength>8070594</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2022-09-02T11:43:22.4976122 v2 61009 2022-09-02 A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells 801454eb7d42eeb5165b73fb362381ee Michael Spence Michael Spence true false de06433fccc0514dcf45aa9d1fc5c60f Adam Pockett Adam Pockett true false e4ae52ae9b63b7b6da834c460ee3bb2d Zhengfei Wei Zhengfei Wei true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2022-09-02 Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs─lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3–5% increase in integrated JSC in each sub-cell of a silicon-perovskite tandem structure. Journal Article ACS Applied Energy Materials 5 5 5974 5982 American Chemical Society (ACS) 2574-0962 2574-0962 23 5 2022 2022-05-23 10.1021/acsaem.2c00361 COLLEGE NANME COLLEGE CODE Swansea University SU Library paid the OA fee (TA Institutional Deal) European Regional Development Fund - SPARC II; Engineering and Physical Sciences Research Council - EP/N020863/1, EP/S513714/1, EP/T028513/1 2022-09-02T11:43:22.4976122 2022-09-02T11:37:54.4565066 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Michael Spence 1 Richard Hammond 2 Adam Pockett 3 Zhengfei Wei 4 Andrew Johnson 5 Trystan Watson 0000-0002-8015-1436 6 Matt Carnie 0000-0002-4232-1967 7 61009__25067__4ba570fa49cd4fde988a986fc8f7680f.pdf 61009_VoR.pdf 2022-09-02T11:42:03.6823508 Output 8070594 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License true eng https://creativecommons.org/licenses/by/4.0/ |
| title |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells |
| spellingShingle |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells Michael Spence Adam Pockett Zhengfei Wei Trystan Watson Matt Carnie |
| title_short |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells |
| title_full |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells |
| title_fullStr |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells |
| title_full_unstemmed |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells |
| title_sort |
A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells |
| author_id_str_mv |
801454eb7d42eeb5165b73fb362381ee de06433fccc0514dcf45aa9d1fc5c60f e4ae52ae9b63b7b6da834c460ee3bb2d a210327b52472cfe8df9b8108d661457 73b367694366a646b90bb15db32bb8c0 |
| author_id_fullname_str_mv |
801454eb7d42eeb5165b73fb362381ee_***_Michael Spence de06433fccc0514dcf45aa9d1fc5c60f_***_Adam Pockett e4ae52ae9b63b7b6da834c460ee3bb2d_***_Zhengfei Wei a210327b52472cfe8df9b8108d661457_***_Trystan Watson 73b367694366a646b90bb15db32bb8c0_***_Matt Carnie |
| author |
Michael Spence Adam Pockett Zhengfei Wei Trystan Watson Matt Carnie |
| author2 |
Michael Spence Richard Hammond Adam Pockett Zhengfei Wei Andrew Johnson Trystan Watson Matt Carnie |
| format |
Journal article |
| container_title |
ACS Applied Energy Materials |
| container_volume |
5 |
| container_issue |
5 |
| container_start_page |
5974 |
| publishDate |
2022 |
| institution |
Swansea University |
| issn |
2574-0962 2574-0962 |
| doi_str_mv |
10.1021/acsaem.2c00361 |
| publisher |
American Chemical Society (ACS) |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
| document_store_str |
1 |
| active_str |
0 |
| description |
Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs─lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3–5% increase in integrated JSC in each sub-cell of a silicon-perovskite tandem structure. |
| published_date |
2022-05-23T05:06:30Z |
| _version_ |
1856985304355831808 |
| score |
11.096068 |

