No Cover Image

Journal article 755 views 237 downloads

A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells

Michael Spence, Richard Hammond, Adam Pockett, Zhengfei Wei, Andrew Johnson, Trystan Watson Orcid Logo, Matt Carnie Orcid Logo

ACS Applied Energy Materials, Volume: 5, Issue: 5, Pages: 5974 - 5982

Swansea University Authors: Michael Spence, Adam Pockett, Zhengfei Wei, Trystan Watson Orcid Logo, Matt Carnie Orcid Logo

  • 61009_VoR.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License

    Download (7.7MB)

Check full text

DOI (Published version): 10.1021/acsaem.2c00361

Abstract

Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tande...

Full description

Published in: ACS Applied Energy Materials
ISSN: 2574-0962 2574-0962
Published: American Chemical Society (ACS) 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61009
first_indexed 2022-09-02T10:41:05Z
last_indexed 2023-01-13T19:21:33Z
id cronfa61009
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-09-02T11:43:22.4976122</datestamp><bib-version>v2</bib-version><id>61009</id><entry>2022-09-02</entry><title>A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells</title><swanseaauthors><author><sid>801454eb7d42eeb5165b73fb362381ee</sid><firstname>Michael</firstname><surname>Spence</surname><name>Michael Spence</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>de06433fccc0514dcf45aa9d1fc5c60f</sid><firstname>Adam</firstname><surname>Pockett</surname><name>Adam Pockett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e4ae52ae9b63b7b6da834c460ee3bb2d</sid><ORCID/><firstname>Zhengfei</firstname><surname>Wei</surname><name>Zhengfei Wei</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-02</date><abstract>Multijunction solar cells offer a route to exceed the Shockley&#x2013;Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs&#x2500;lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3&#x2013;5% increase in integrated JSC in each sub-cell of a silicon-perovskite tandem structure.</abstract><type>Journal Article</type><journal>ACS Applied Energy Materials</journal><volume>5</volume><journalNumber>5</journalNumber><paginationStart>5974</paginationStart><paginationEnd>5982</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2574-0962</issnPrint><issnElectronic>2574-0962</issnElectronic><keywords/><publishedDay>23</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-05-23</publishedDate><doi>10.1021/acsaem.2c00361</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>European Regional Development Fund - SPARC II; Engineering and Physical Sciences Research Council - EP/N020863/1, EP/S513714/1, EP/T028513/1</funders><projectreference/><lastEdited>2022-09-02T11:43:22.4976122</lastEdited><Created>2022-09-02T11:37:54.4565066</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Michael</firstname><surname>Spence</surname><order>1</order></author><author><firstname>Richard</firstname><surname>Hammond</surname><order>2</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>3</order></author><author><firstname>Zhengfei</firstname><surname>Wei</surname><orcid/><order>4</order></author><author><firstname>Andrew</firstname><surname>Johnson</surname><order>5</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>6</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>7</order></author></authors><documents><document><filename>61009__25067__4ba570fa49cd4fde988a986fc8f7680f.pdf</filename><originalFilename>61009_VoR.pdf</originalFilename><uploaded>2022-09-02T11:42:03.6823508</uploaded><type>Output</type><contentLength>8070594</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-09-02T11:43:22.4976122 v2 61009 2022-09-02 A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells 801454eb7d42eeb5165b73fb362381ee Michael Spence Michael Spence true false de06433fccc0514dcf45aa9d1fc5c60f Adam Pockett Adam Pockett true false e4ae52ae9b63b7b6da834c460ee3bb2d Zhengfei Wei Zhengfei Wei true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2022-09-02 Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs─lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3–5% increase in integrated JSC in each sub-cell of a silicon-perovskite tandem structure. Journal Article ACS Applied Energy Materials 5 5 5974 5982 American Chemical Society (ACS) 2574-0962 2574-0962 23 5 2022 2022-05-23 10.1021/acsaem.2c00361 COLLEGE NANME COLLEGE CODE Swansea University SU Library paid the OA fee (TA Institutional Deal) European Regional Development Fund - SPARC II; Engineering and Physical Sciences Research Council - EP/N020863/1, EP/S513714/1, EP/T028513/1 2022-09-02T11:43:22.4976122 2022-09-02T11:37:54.4565066 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Michael Spence 1 Richard Hammond 2 Adam Pockett 3 Zhengfei Wei 4 Andrew Johnson 5 Trystan Watson 0000-0002-8015-1436 6 Matt Carnie 0000-0002-4232-1967 7 61009__25067__4ba570fa49cd4fde988a986fc8f7680f.pdf 61009_VoR.pdf 2022-09-02T11:42:03.6823508 Output 8070594 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License true eng https://creativecommons.org/licenses/by/4.0/
title A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
spellingShingle A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
Michael Spence
Adam Pockett
Zhengfei Wei
Trystan Watson
Matt Carnie
title_short A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
title_full A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
title_fullStr A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
title_full_unstemmed A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
title_sort A Comparison of Different Textured and Non-Textured Anti-Reflective Coatings for Planar Monolithic Silicon-Perovskite Tandem Solar Cells
author_id_str_mv 801454eb7d42eeb5165b73fb362381ee
de06433fccc0514dcf45aa9d1fc5c60f
e4ae52ae9b63b7b6da834c460ee3bb2d
a210327b52472cfe8df9b8108d661457
73b367694366a646b90bb15db32bb8c0
author_id_fullname_str_mv 801454eb7d42eeb5165b73fb362381ee_***_Michael Spence
de06433fccc0514dcf45aa9d1fc5c60f_***_Adam Pockett
e4ae52ae9b63b7b6da834c460ee3bb2d_***_Zhengfei Wei
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
author Michael Spence
Adam Pockett
Zhengfei Wei
Trystan Watson
Matt Carnie
author2 Michael Spence
Richard Hammond
Adam Pockett
Zhengfei Wei
Andrew Johnson
Trystan Watson
Matt Carnie
format Journal article
container_title ACS Applied Energy Materials
container_volume 5
container_issue 5
container_start_page 5974
publishDate 2022
institution Swansea University
issn 2574-0962
2574-0962
doi_str_mv 10.1021/acsaem.2c00361
publisher American Chemical Society (ACS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Multijunction solar cells offer a route to exceed the Shockley–Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required. This results in a flat top surface that can lead to higher optical reflection losses than conformal deposition on textured silicon bottom cells. To overcome this, textured anti-reflective coatings (ARCs) can be used on top of the finished cell, with textured polydimethylsiloxane (PDMS), a promising candidate. In this work, we vary the texture geometry and film thickness of PDMS anti-reflective foils to understand the effect of these parameters on reflectance of the foil. The best film is selected, and anti-reflective performance is compared with two common planar ARCs─lithium fluoride (LiF) and magnesium fluoride (MgF2) showing considerable reduction in reflectance for a non-textured silicon-perovskite tandem cell. The application of a PDMS film is shown to give a 3–5% increase in integrated JSC in each sub-cell of a silicon-perovskite tandem structure.
published_date 2022-05-23T08:19:58Z
_version_ 1822389435317092352
score 11.117952