Journal article 737 views 47 downloads
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise
Applied Mathematics & Optimization, Volume: 87, Issue: 1, Pages: 1 - 46
Swansea University Author: Jiang-lun Wu
-
PDF | Accepted Manuscript
Download (214.71KB)
DOI (Published version): 10.1007/s00245-022-09909-5
Abstract
The flow of nematic liquid crystals can be described by a highly nonlinear stochastic hydrodynamicalmodel, thus is often influenced by random fluctuations, such as uncertainty in specifying initial conditions and boundary conditions. In this article, we consider a 2-D stochastic nematic liquid cryst...
Published in: | Applied Mathematics & Optimization |
---|---|
ISSN: | 0095-4616 1432-0606 |
Published: |
Switzerland AG
Springer Science and Business Media LLC
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60862 |
first_indexed |
2022-08-21T20:13:08Z |
---|---|
last_indexed |
2024-11-14T12:18:07Z |
id |
cronfa60862 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-07-17T15:37:10.9451223</datestamp><bib-version>v2</bib-version><id>60862</id><entry>2022-08-21</entry><title>Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-08-21</date><abstract>The flow of nematic liquid crystals can be described by a highly nonlinear stochastic hydrodynamicalmodel, thus is often influenced by random fluctuations, such as uncertainty in specifying initial conditions and boundary conditions. In this article, we consider a 2-D stochastic nematic liquid crystals with the velocity field perturbed by affine-linear multiplicative white noise, with random initial data and random boundary conditions. Our main objective is to obtain the global well-posedness of the stochastic equations under the sufficient Malliavin regularity of the initial condition. The Malliavin calculus techniques play important roles when we obtain the global existence of the solutions to the stochastic nematic liquid crystal model with random initial and boundary conditions.</abstract><type>Journal Article</type><journal>Applied Mathematics &amp; Optimization</journal><volume>87</volume><journalNumber>1</journalNumber><paginationStart>1</paginationStart><paginationEnd>46</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication>Switzerland AG</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint>0095-4616</issnPrint><issnElectronic>1432-0606</issnElectronic><keywords>Stochastic nematic liquid crystals flows; Anticipating initial condition; Malliavin derivative; Apriori estimates; Skorohod integral</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-01</publishedDate><doi>10.1007/s00245-022-09909-5</doi><url>http://dx.doi.org/10.1007/s00245-022-09909-5</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>NNSF of China(Grant No. 11971077, 11801283), Chongqing Key Laboratory of
Analytic Mathematics and Applications, Chongqing University, Chongqing, 401331,China.</funders><projectreference/><lastEdited>2024-07-17T15:37:10.9451223</lastEdited><Created>2022-08-21T21:01:30.0271306</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Lidan</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Guoli</firstname><surname>Zhou</surname><orcid>0000-0002-6599-1859</orcid><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>60862__24979__439731894a174a9795d2045074cf1244.pdf</filename><originalFilename>WangWuZhou.pdf</originalFilename><uploaded>2022-08-21T21:12:23.9898377</uploaded><type>Output</type><contentLength>219862</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-11-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-07-17T15:37:10.9451223 v2 60862 2022-08-21 Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2022-08-21 The flow of nematic liquid crystals can be described by a highly nonlinear stochastic hydrodynamicalmodel, thus is often influenced by random fluctuations, such as uncertainty in specifying initial conditions and boundary conditions. In this article, we consider a 2-D stochastic nematic liquid crystals with the velocity field perturbed by affine-linear multiplicative white noise, with random initial data and random boundary conditions. Our main objective is to obtain the global well-posedness of the stochastic equations under the sufficient Malliavin regularity of the initial condition. The Malliavin calculus techniques play important roles when we obtain the global existence of the solutions to the stochastic nematic liquid crystal model with random initial and boundary conditions. Journal Article Applied Mathematics & Optimization 87 1 1 46 Springer Science and Business Media LLC Switzerland AG 0095-4616 1432-0606 Stochastic nematic liquid crystals flows; Anticipating initial condition; Malliavin derivative; Apriori estimates; Skorohod integral 1 2 2023 2023-02-01 10.1007/s00245-022-09909-5 http://dx.doi.org/10.1007/s00245-022-09909-5 COLLEGE NANME COLLEGE CODE Swansea University NNSF of China(Grant No. 11971077, 11801283), Chongqing Key Laboratory of Analytic Mathematics and Applications, Chongqing University, Chongqing, 401331,China. 2024-07-17T15:37:10.9451223 2022-08-21T21:01:30.0271306 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Lidan Wang 1 Guoli Zhou 0000-0002-6599-1859 2 Jiang-lun Wu 3 60862__24979__439731894a174a9795d2045074cf1244.pdf WangWuZhou.pdf 2022-08-21T21:12:23.9898377 Output 219862 application/pdf Accepted Manuscript true 2023-11-07T00:00:00.0000000 true eng |
title |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise |
spellingShingle |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise Jiang-lun Wu |
title_short |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise |
title_full |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise |
title_fullStr |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise |
title_full_unstemmed |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise |
title_sort |
Global Well-Posedness of Stochastic Nematic Liquid Crystals with Random Initial and Boundary Conditions Driven by Multiplicative Noise |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Lidan Wang Guoli Zhou Jiang-lun Wu |
format |
Journal article |
container_title |
Applied Mathematics & Optimization |
container_volume |
87 |
container_issue |
1 |
container_start_page |
1 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0095-4616 1432-0606 |
doi_str_mv |
10.1007/s00245-022-09909-5 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.1007/s00245-022-09909-5 |
document_store_str |
1 |
active_str |
0 |
description |
The flow of nematic liquid crystals can be described by a highly nonlinear stochastic hydrodynamicalmodel, thus is often influenced by random fluctuations, such as uncertainty in specifying initial conditions and boundary conditions. In this article, we consider a 2-D stochastic nematic liquid crystals with the velocity field perturbed by affine-linear multiplicative white noise, with random initial data and random boundary conditions. Our main objective is to obtain the global well-posedness of the stochastic equations under the sufficient Malliavin regularity of the initial condition. The Malliavin calculus techniques play important roles when we obtain the global existence of the solutions to the stochastic nematic liquid crystal model with random initial and boundary conditions. |
published_date |
2023-02-01T20:14:22Z |
_version_ |
1821347217319919616 |
score |
11.04748 |