Journal article 781 views 63 downloads
A Pleistocene legacy structures variation in modern seagrass ecosystems
Proceedings of the National Academy of Sciences, Volume: 119, Issue: 32
Swansea University Authors: John Griffin , Richard Unsworth
-
PDF | Version of Record
Copyright © 2022 the Author(s). This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Download (2.1MB)
DOI (Published version): 10.1073/pnas.2121425119
Abstract
Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment...
Published in: | Proceedings of the National Academy of Sciences |
---|---|
ISSN: | 0027-8424 1091-6490 |
Published: |
Proceedings of the National Academy of Sciences
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60794 |
first_indexed |
2022-08-24T09:02:53Z |
---|---|
last_indexed |
2023-01-13T19:21:11Z |
id |
cronfa60794 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-08-24T10:05:05.6630288</datestamp><bib-version>v2</bib-version><id>60794</id><entry>2022-08-11</entry><title>A Pleistocene legacy structures variation in modern seagrass ecosystems</title><swanseaauthors><author><sid>9814fbffa76dd9c9a207166354cd0b2f</sid><ORCID>0000-0003-3295-6480</ORCID><firstname>John</firstname><surname>Griffin</surname><name>John Griffin</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b0f33acd13a3ab541cf2aaea27f4fc2f</sid><ORCID>0000-0003-0036-9724</ORCID><firstname>Richard</firstname><surname>Unsworth</surname><name>Richard Unsworth</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-08-11</date><deptcode>BGPS</deptcode><abstract>Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.</abstract><type>Journal Article</type><journal>Proceedings of the National Academy of Sciences</journal><volume>119</volume><journalNumber>32</journalNumber><paginationStart/><paginationEnd/><publisher>Proceedings of the National Academy of Sciences</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0027-8424</issnPrint><issnElectronic>1091-6490</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-01</publishedDate><doi>10.1073/pnas.2121425119</doi><url/><notes>Data Availability:All data used in the analyses, and associated R code, are available at https://doi.org/10.5281/zenodo.6808753(64), with the exception ofthe genetic data, available at https://doi.org/10.5281/zenodo.3660013(65).</notes><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by the US NSF (OCE-1031061, OCE-1336206, OCE0-1336741, OCE-1336905) and the Smithsonian Institution. J.L.O. thanks Jan Veldsink for DNA extractions and microsatellite gen-otyping. F.T. was supported by Jose Castillejo Award CAS14/00177. A.H.E. was supported by the FCT (Foundation for Science and Technology) through ProjectUIDB/04326/2020 and Contract CEECINST/00114/2018.</funders><projectreference/><lastEdited>2022-08-24T10:05:05.6630288</lastEdited><Created>2022-08-11T09:38:48.3471297</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>J. Emmett</firstname><surname>Duffy</surname><orcid>0000-0001-8595-6391</orcid><order>1</order></author><author><firstname>John J.</firstname><surname>Stachowicz</surname><orcid>0000-0003-2735-0564</orcid><order>2</order></author><author><firstname>Pamela L.</firstname><surname>Reynolds</surname><order>3</order></author><author><firstname>Kevin A.</firstname><surname>Hovel</surname><order>4</order></author><author><firstname>Marlene</firstname><surname>Jahnke</surname><order>5</order></author><author><firstname>Erik E.</firstname><surname>Sotka</surname><orcid>0000-0001-5167-8549</orcid><order>6</order></author><author><firstname>Christoffer</firstname><surname>Boström</surname><order>7</order></author><author><firstname>Katharyn E.</firstname><surname>Boyer</surname><orcid>0000-0003-2680-2493</orcid><order>8</order></author><author><firstname>Mathieu</firstname><surname>Cusson</surname><orcid>0000-0002-2111-4803</orcid><order>9</order></author><author><firstname>Johan</firstname><surname>Eklöf</surname><order>10</order></author><author><firstname>Aschwin H.</firstname><surname>Engelen</surname><orcid>0000-0002-9579-9606</orcid><order>11</order></author><author><firstname>Britas Klemens</firstname><surname>Eriksson</surname><order>12</order></author><author><firstname>F. Joel</firstname><surname>Fodrie</surname><orcid>0000-0001-8253-9648</orcid><order>13</order></author><author><firstname>John</firstname><surname>Griffin</surname><orcid>0000-0003-3295-6480</orcid><order>14</order></author><author><firstname>Clara M.</firstname><surname>Hereu</surname><orcid>0000-0002-2088-9295</orcid><order>15</order></author><author><firstname>Masakazu</firstname><surname>Hori</surname><order>16</order></author><author><firstname>A. Randall</firstname><surname>Hughes</surname><orcid>0000-0001-5072-7310</orcid><order>17</order></author><author><firstname>Mikhail V.</firstname><surname>Ivanov</surname><orcid>0000-0002-8277-7387</orcid><order>18</order></author><author><firstname>Pablo</firstname><surname>Jorgensen</surname><orcid>0000-0002-6018-7124</orcid><order>19</order></author><author><firstname>Claudia</firstname><surname>Kruschel</surname><order>20</order></author><author><firstname>Kun-Seop</firstname><surname>Lee</surname><orcid>0000-0003-0431-1829</orcid><order>21</order></author><author><firstname>Jonathan S.</firstname><surname>Lefcheck</surname><orcid>0000-0002-8787-1786</orcid><order>22</order></author><author><firstname>Per-Olav</firstname><surname>Moksnes</surname><order>23</order></author><author><firstname>Masahiro</firstname><surname>Nakaoka</surname><orcid>0000-0002-5722-3585</orcid><order>24</order></author><author><firstname>Mary I.</firstname><surname>O’Connor</surname><orcid>0000-0001-9583-1592</orcid><order>25</order></author><author><firstname>Nessa E.</firstname><surname>O’Connor</surname><orcid>0000-0002-3133-0913</orcid><order>26</order></author><author><firstname>Robert J.</firstname><surname>Orth</surname><orcid>0000-0003-2491-7430</orcid><order>27</order></author><author><firstname>Bradley J.</firstname><surname>Peterson</surname><order>28</order></author><author><firstname>Henning</firstname><surname>Reiss</surname><order>29</order></author><author><firstname>Katrin</firstname><surname>Reiss</surname><order>30</order></author><author><firstname>J. Paul</firstname><surname>Richardson</surname><order>31</order></author><author><firstname>Francesca</firstname><surname>Rossi</surname><orcid>0000-0003-1928-9193</orcid><order>32</order></author><author><firstname>Jennifer L.</firstname><surname>Ruesink</surname><order>33</order></author><author><firstname>Stewart T.</firstname><surname>Schultz</surname><order>34</order></author><author><firstname>Jonas</firstname><surname>Thormar</surname><orcid>0000-0002-7925-3822</orcid><order>35</order></author><author><firstname>Fiona</firstname><surname>Tomas</surname><order>36</order></author><author><firstname>Richard</firstname><surname>Unsworth</surname><orcid>0000-0003-0036-9724</orcid><order>37</order></author><author><firstname>Erin</firstname><surname>Voigt</surname><order>38</order></author><author><firstname>Matthew A.</firstname><surname>Whalen</surname><order>39</order></author><author><firstname>Shelby L.</firstname><surname>Ziegler</surname><orcid>0000-0001-7218-0811</orcid><order>40</order></author><author><firstname>Jeanine L.</firstname><surname>Olsen</surname><order>41</order></author></authors><documents><document><filename>60794__25002__9b657b669cf14710808c6147ab704b86.pdf</filename><originalFilename>60794_VoR.pdf</originalFilename><uploaded>2022-08-24T10:03:29.1065990</uploaded><type>Output</type><contentLength>2200550</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright © 2022 the Author(s). This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-08-24T10:05:05.6630288 v2 60794 2022-08-11 A Pleistocene legacy structures variation in modern seagrass ecosystems 9814fbffa76dd9c9a207166354cd0b2f 0000-0003-3295-6480 John Griffin John Griffin true false b0f33acd13a3ab541cf2aaea27f4fc2f 0000-0003-0036-9724 Richard Unsworth Richard Unsworth true false 2022-08-11 BGPS Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. Journal Article Proceedings of the National Academy of Sciences 119 32 Proceedings of the National Academy of Sciences 0027-8424 1091-6490 1 8 2022 2022-08-01 10.1073/pnas.2121425119 Data Availability:All data used in the analyses, and associated R code, are available at https://doi.org/10.5281/zenodo.6808753(64), with the exception ofthe genetic data, available at https://doi.org/10.5281/zenodo.3660013(65). COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University This work was supported by the US NSF (OCE-1031061, OCE-1336206, OCE0-1336741, OCE-1336905) and the Smithsonian Institution. J.L.O. thanks Jan Veldsink for DNA extractions and microsatellite gen-otyping. F.T. was supported by Jose Castillejo Award CAS14/00177. A.H.E. was supported by the FCT (Foundation for Science and Technology) through ProjectUIDB/04326/2020 and Contract CEECINST/00114/2018. 2022-08-24T10:05:05.6630288 2022-08-11T09:38:48.3471297 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences J. Emmett Duffy 0000-0001-8595-6391 1 John J. Stachowicz 0000-0003-2735-0564 2 Pamela L. Reynolds 3 Kevin A. Hovel 4 Marlene Jahnke 5 Erik E. Sotka 0000-0001-5167-8549 6 Christoffer Boström 7 Katharyn E. Boyer 0000-0003-2680-2493 8 Mathieu Cusson 0000-0002-2111-4803 9 Johan Eklöf 10 Aschwin H. Engelen 0000-0002-9579-9606 11 Britas Klemens Eriksson 12 F. Joel Fodrie 0000-0001-8253-9648 13 John Griffin 0000-0003-3295-6480 14 Clara M. Hereu 0000-0002-2088-9295 15 Masakazu Hori 16 A. Randall Hughes 0000-0001-5072-7310 17 Mikhail V. Ivanov 0000-0002-8277-7387 18 Pablo Jorgensen 0000-0002-6018-7124 19 Claudia Kruschel 20 Kun-Seop Lee 0000-0003-0431-1829 21 Jonathan S. Lefcheck 0000-0002-8787-1786 22 Per-Olav Moksnes 23 Masahiro Nakaoka 0000-0002-5722-3585 24 Mary I. O’Connor 0000-0001-9583-1592 25 Nessa E. O’Connor 0000-0002-3133-0913 26 Robert J. Orth 0000-0003-2491-7430 27 Bradley J. Peterson 28 Henning Reiss 29 Katrin Reiss 30 J. Paul Richardson 31 Francesca Rossi 0000-0003-1928-9193 32 Jennifer L. Ruesink 33 Stewart T. Schultz 34 Jonas Thormar 0000-0002-7925-3822 35 Fiona Tomas 36 Richard Unsworth 0000-0003-0036-9724 37 Erin Voigt 38 Matthew A. Whalen 39 Shelby L. Ziegler 0000-0001-7218-0811 40 Jeanine L. Olsen 41 60794__25002__9b657b669cf14710808c6147ab704b86.pdf 60794_VoR.pdf 2022-08-24T10:03:29.1065990 Output 2200550 application/pdf Version of Record true Copyright © 2022 the Author(s). This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
A Pleistocene legacy structures variation in modern seagrass ecosystems |
spellingShingle |
A Pleistocene legacy structures variation in modern seagrass ecosystems John Griffin Richard Unsworth |
title_short |
A Pleistocene legacy structures variation in modern seagrass ecosystems |
title_full |
A Pleistocene legacy structures variation in modern seagrass ecosystems |
title_fullStr |
A Pleistocene legacy structures variation in modern seagrass ecosystems |
title_full_unstemmed |
A Pleistocene legacy structures variation in modern seagrass ecosystems |
title_sort |
A Pleistocene legacy structures variation in modern seagrass ecosystems |
author_id_str_mv |
9814fbffa76dd9c9a207166354cd0b2f b0f33acd13a3ab541cf2aaea27f4fc2f |
author_id_fullname_str_mv |
9814fbffa76dd9c9a207166354cd0b2f_***_John Griffin b0f33acd13a3ab541cf2aaea27f4fc2f_***_Richard Unsworth |
author |
John Griffin Richard Unsworth |
author2 |
J. Emmett Duffy John J. Stachowicz Pamela L. Reynolds Kevin A. Hovel Marlene Jahnke Erik E. Sotka Christoffer Boström Katharyn E. Boyer Mathieu Cusson Johan Eklöf Aschwin H. Engelen Britas Klemens Eriksson F. Joel Fodrie John Griffin Clara M. Hereu Masakazu Hori A. Randall Hughes Mikhail V. Ivanov Pablo Jorgensen Claudia Kruschel Kun-Seop Lee Jonathan S. Lefcheck Per-Olav Moksnes Masahiro Nakaoka Mary I. O’Connor Nessa E. O’Connor Robert J. Orth Bradley J. Peterson Henning Reiss Katrin Reiss J. Paul Richardson Francesca Rossi Jennifer L. Ruesink Stewart T. Schultz Jonas Thormar Fiona Tomas Richard Unsworth Erin Voigt Matthew A. Whalen Shelby L. Ziegler Jeanine L. Olsen |
format |
Journal article |
container_title |
Proceedings of the National Academy of Sciences |
container_volume |
119 |
container_issue |
32 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0027-8424 1091-6490 |
doi_str_mv |
10.1073/pnas.2121425119 |
publisher |
Proceedings of the National Academy of Sciences |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
1 |
active_str |
0 |
description |
Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. |
published_date |
2022-08-01T20:14:08Z |
_version_ |
1821347203171483648 |
score |
11.04748 |