Journal article 701 views 78 downloads
Hybrid magnetorheological elastomers enable versatile soft actuators
npj Computational Materials, Volume: 8, Issue: 1
Swansea University Author: Mokarram Hossain
-
PDF | Version of Record
© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License
Download (5.68MB)
DOI (Published version): 10.1038/s41524-022-00844-1
Abstract
Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experi...
Published in: | npj Computational Materials |
---|---|
ISSN: | 2057-3960 |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60678 |
first_indexed |
2022-07-29T14:03:37Z |
---|---|
last_indexed |
2023-01-13T19:20:59Z |
id |
cronfa60678 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-31T20:25:36.4988074</datestamp><bib-version>v2</bib-version><id>60678</id><entry>2022-07-29</entry><title>Hybrid magnetorheological elastomers enable versatile soft actuators</title><swanseaauthors><author><sid>140f4aa5c5ec18ec173c8542a7fddafd</sid><ORCID>0000-0002-4616-1104</ORCID><firstname>Mokarram</firstname><surname>Hossain</surname><name>Mokarram Hossain</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-29</date><deptcode>ACEM</deptcode><abstract>Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation.</abstract><type>Journal Article</type><journal>npj Computational Materials</journal><volume>8</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2057-3960</issnElectronic><keywords/><publishedDay>28</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-28</publishedDate><doi>10.1038/s41524-022-00844-1</doi><url/><notes>Data availability: The data generated during the current study are available from the corresponding author upon reasonable request.</notes><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>The authors acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP). M.H. and D.G.G. acknowledge support from MCIN/AEI/10.13039/501100011033 under Grant number PID2020-117894GA-I00. M.A.M.M. acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874). D.G.G. acknowledges support from the Talent Attraction grant (CM 2018- 2018-T2/IND-9992) from the Comunidad de Madrid. M.H. acknowledges the funding through an EPSRC Impact Acceleration Award (EP/R511614/1).</funders><projectreference/><lastEdited>2022-10-31T20:25:36.4988074</lastEdited><Created>2022-07-29T15:00:49.9156227</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering</level></path><authors><author><firstname>Miguel Angel</firstname><surname>Moreno-Mateos</surname><orcid>0000-0002-3476-2180</orcid><order>1</order></author><author><firstname>Mokarram</firstname><surname>Hossain</surname><orcid>0000-0002-4616-1104</orcid><order>2</order></author><author><firstname>Paul</firstname><surname>Steinmann</surname><orcid>0000-0003-1490-947x</orcid><order>3</order></author><author><firstname>Daniel</firstname><surname>Garcia-Gonzalez</surname><orcid>0000-0003-4692-3508</orcid><order>4</order></author></authors><documents><document><filename>60678__24780__ba9ac45c38724202996e6a18fa132ed0.pdf</filename><originalFilename>60678.pdf</originalFilename><uploaded>2022-07-29T15:03:35.9386653</uploaded><type>Output</type><contentLength>5954590</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-31T20:25:36.4988074 v2 60678 2022-07-29 Hybrid magnetorheological elastomers enable versatile soft actuators 140f4aa5c5ec18ec173c8542a7fddafd 0000-0002-4616-1104 Mokarram Hossain Mokarram Hossain true false 2022-07-29 ACEM Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation. Journal Article npj Computational Materials 8 1 Springer Science and Business Media LLC 2057-3960 28 7 2022 2022-07-28 10.1038/s41524-022-00844-1 Data availability: The data generated during the current study are available from the corresponding author upon reasonable request. COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University The authors acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP). M.H. and D.G.G. acknowledge support from MCIN/AEI/10.13039/501100011033 under Grant number PID2020-117894GA-I00. M.A.M.M. acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874). D.G.G. acknowledges support from the Talent Attraction grant (CM 2018- 2018-T2/IND-9992) from the Comunidad de Madrid. M.H. acknowledges the funding through an EPSRC Impact Acceleration Award (EP/R511614/1). 2022-10-31T20:25:36.4988074 2022-07-29T15:00:49.9156227 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering Miguel Angel Moreno-Mateos 0000-0002-3476-2180 1 Mokarram Hossain 0000-0002-4616-1104 2 Paul Steinmann 0000-0003-1490-947x 3 Daniel Garcia-Gonzalez 0000-0003-4692-3508 4 60678__24780__ba9ac45c38724202996e6a18fa132ed0.pdf 60678.pdf 2022-07-29T15:03:35.9386653 Output 5954590 application/pdf Version of Record true © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Hybrid magnetorheological elastomers enable versatile soft actuators |
spellingShingle |
Hybrid magnetorheological elastomers enable versatile soft actuators Mokarram Hossain |
title_short |
Hybrid magnetorheological elastomers enable versatile soft actuators |
title_full |
Hybrid magnetorheological elastomers enable versatile soft actuators |
title_fullStr |
Hybrid magnetorheological elastomers enable versatile soft actuators |
title_full_unstemmed |
Hybrid magnetorheological elastomers enable versatile soft actuators |
title_sort |
Hybrid magnetorheological elastomers enable versatile soft actuators |
author_id_str_mv |
140f4aa5c5ec18ec173c8542a7fddafd |
author_id_fullname_str_mv |
140f4aa5c5ec18ec173c8542a7fddafd_***_Mokarram Hossain |
author |
Mokarram Hossain |
author2 |
Miguel Angel Moreno-Mateos Mokarram Hossain Paul Steinmann Daniel Garcia-Gonzalez |
format |
Journal article |
container_title |
npj Computational Materials |
container_volume |
8 |
container_issue |
1 |
publishDate |
2022 |
institution |
Swansea University |
issn |
2057-3960 |
doi_str_mv |
10.1038/s41524-022-00844-1 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - General Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Recent advances in magnetorheological elastomers (MREs) have posed the question on whether the combination of both soft- and hard-magnetic particles may open new routes to design versatile multifunctional actuators. Here, we conceptualise ultra-soft hybrid MREs (≈1–10 kPa stiffness) combining experimental and computational approaches. First, a comprehensive experimental characterisation is performed. The results unravel that the magneto-mechanical performance of hybrid MREs can be optimised by selecting an adequate mixing ratio between particles. Then, a multi-physics computational framework provides insights into the synergistic magneto-mechanical interactions at the microscale. Soft particles amplify the magnetisation and hard particles contribute to torsional actuation. Our numerical results suggest that the effective response of hybrid MREs emerges from these intricate interactions. Overall, we uncover exciting possibilities to push the frontiers of MRE solutions. These are demonstrated by simulating a bimorph beam that provides actuation flexibility either enhancing mechanical bending or material stiffening, depending on the magnetic stimulation. |
published_date |
2022-07-28T08:13:17Z |
_version_ |
1821392448206667776 |
score |
11.52865 |