No Cover Image

Journal article 655 views 138 downloads

Static Disorder in Lead Halide Perovskites

Stefan Zeiske, Oskar Sandberg Orcid Logo, Nasim Zarrabi, Christian M. Wolff Orcid Logo, Meysam Raoufi, Francisco Peña-Camargo Orcid Logo, Emilio Gutierrez-Partida, Paul Meredith Orcid Logo, Martin Stolterfoht Orcid Logo, Ardalan Armin

The Journal of Physical Chemistry Letters, Volume: 13, Issue: 31, Pages: 7280 - 7285

Swansea University Authors: Stefan Zeiske, Oskar Sandberg Orcid Logo, Nasim Zarrabi, Paul Meredith Orcid Logo, Ardalan Armin

  • 60632.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License

    Download (1.73MB)

Abstract

In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy meth...

Full description

Published in: The Journal of Physical Chemistry Letters
ISSN: 1948-7185 1948-7185
Published: American Chemical Society (ACS) 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60632
first_indexed 2022-07-26T11:02:39Z
last_indexed 2023-01-13T19:20:54Z
id cronfa60632
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-09-02T10:59:11.0516401</datestamp><bib-version>v2</bib-version><id>60632</id><entry>2022-07-26</entry><title>Static Disorder in Lead Halide Perovskites</title><swanseaauthors><author><sid>0c9c5b89df9ac882c3e09dd1a9f28fc5</sid><firstname>Stefan</firstname><surname>Zeiske</surname><name>Stefan Zeiske</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9e91512a54d5aee66cd77851a96ba747</sid><ORCID>0000-0003-3778-8746</ORCID><firstname>Oskar</firstname><surname>Sandberg</surname><name>Oskar Sandberg</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d20976a5892074dae0368a4bb4433f76</sid><firstname>Nasim</firstname><surname>Zarrabi</surname><name>Nasim Zarrabi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>31e8fe57fa180d418afd48c3af280c2e</sid><ORCID>0000-0002-9049-7414</ORCID><firstname>Paul</firstname><surname>Meredith</surname><name>Paul Meredith</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b270622d739d81e131bec7a819e2fd</sid><firstname>Ardalan</firstname><surname>Armin</surname><name>Ardalan Armin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-26</date><deptcode>BGPS</deptcode><abstract>In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 &#xB1; 1.0, 13.2 &#xB1; 1.0, and 13.5 &#xB1; 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 &#xB1; 0.5, 4.7 &#xB1; 0.3, and 3.3 &#xB1; 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices.</abstract><type>Journal Article</type><journal>The Journal of Physical Chemistry Letters</journal><volume>13</volume><journalNumber>31</journalNumber><paginationStart>7280</paginationStart><paginationEnd>7285</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1948-7185</issnPrint><issnElectronic>1948-7185</issnElectronic><keywords/><publishedDay>11</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-11</publishedDate><doi>10.1021/acs.jpclett.2c01652</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Llywodraeth Cymru Deutsche Forschungsgemeinschaft - 498155101, 423749265, 424709669 - SPP 2196; UK Research and Innovation - EP/T028511/1</funders><projectreference/><lastEdited>2022-09-02T10:59:11.0516401</lastEdited><Created>2022-07-26T12:01:30.7138356</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Stefan</firstname><surname>Zeiske</surname><order>1</order></author><author><firstname>Oskar</firstname><surname>Sandberg</surname><orcid>0000-0003-3778-8746</orcid><order>2</order></author><author><firstname>Nasim</firstname><surname>Zarrabi</surname><order>3</order></author><author><firstname>Christian M.</firstname><surname>Wolff</surname><orcid>0000-0002-7210-1869</orcid><order>4</order></author><author><firstname>Meysam</firstname><surname>Raoufi</surname><order>5</order></author><author><firstname>Francisco</firstname><surname>Pe&#xF1;a-Camargo</surname><orcid>0000-0002-8402-4266</orcid><order>6</order></author><author><firstname>Emilio</firstname><surname>Gutierrez-Partida</surname><order>7</order></author><author><firstname>Paul</firstname><surname>Meredith</surname><orcid>0000-0002-9049-7414</orcid><order>8</order></author><author><firstname>Martin</firstname><surname>Stolterfoht</surname><orcid>0000-0002-4023-2178</orcid><order>9</order></author><author><firstname>Ardalan</firstname><surname>Armin</surname><order>10</order></author></authors><documents><document><filename>60632__24874__f8b8cb7cdf9c42baaa5ace620f9cba97.pdf</filename><originalFilename>60632.pdf</originalFilename><uploaded>2022-08-05T13:05:04.9793893</uploaded><type>Output</type><contentLength>1810025</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-09-02T10:59:11.0516401 v2 60632 2022-07-26 Static Disorder in Lead Halide Perovskites 0c9c5b89df9ac882c3e09dd1a9f28fc5 Stefan Zeiske Stefan Zeiske true false 9e91512a54d5aee66cd77851a96ba747 0000-0003-3778-8746 Oskar Sandberg Oskar Sandberg true false d20976a5892074dae0368a4bb4433f76 Nasim Zarrabi Nasim Zarrabi true false 31e8fe57fa180d418afd48c3af280c2e 0000-0002-9049-7414 Paul Meredith Paul Meredith true false 22b270622d739d81e131bec7a819e2fd Ardalan Armin Ardalan Armin true false 2022-07-26 BGPS In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 ± 1.0, 13.2 ± 1.0, and 13.5 ± 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ± 0.5, 4.7 ± 0.3, and 3.3 ± 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices. Journal Article The Journal of Physical Chemistry Letters 13 31 7280 7285 American Chemical Society (ACS) 1948-7185 1948-7185 11 8 2022 2022-08-11 10.1021/acs.jpclett.2c01652 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University SU Library paid the OA fee (TA Institutional Deal) Llywodraeth Cymru Deutsche Forschungsgemeinschaft - 498155101, 423749265, 424709669 - SPP 2196; UK Research and Innovation - EP/T028511/1 2022-09-02T10:59:11.0516401 2022-07-26T12:01:30.7138356 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Stefan Zeiske 1 Oskar Sandberg 0000-0003-3778-8746 2 Nasim Zarrabi 3 Christian M. Wolff 0000-0002-7210-1869 4 Meysam Raoufi 5 Francisco Peña-Camargo 0000-0002-8402-4266 6 Emilio Gutierrez-Partida 7 Paul Meredith 0000-0002-9049-7414 8 Martin Stolterfoht 0000-0002-4023-2178 9 Ardalan Armin 10 60632__24874__f8b8cb7cdf9c42baaa5ace620f9cba97.pdf 60632.pdf 2022-08-05T13:05:04.9793893 Output 1810025 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License true eng https://creativecommons.org/licenses/by/4.0/
title Static Disorder in Lead Halide Perovskites
spellingShingle Static Disorder in Lead Halide Perovskites
Stefan Zeiske
Oskar Sandberg
Nasim Zarrabi
Paul Meredith
Ardalan Armin
title_short Static Disorder in Lead Halide Perovskites
title_full Static Disorder in Lead Halide Perovskites
title_fullStr Static Disorder in Lead Halide Perovskites
title_full_unstemmed Static Disorder in Lead Halide Perovskites
title_sort Static Disorder in Lead Halide Perovskites
author_id_str_mv 0c9c5b89df9ac882c3e09dd1a9f28fc5
9e91512a54d5aee66cd77851a96ba747
d20976a5892074dae0368a4bb4433f76
31e8fe57fa180d418afd48c3af280c2e
22b270622d739d81e131bec7a819e2fd
author_id_fullname_str_mv 0c9c5b89df9ac882c3e09dd1a9f28fc5_***_Stefan Zeiske
9e91512a54d5aee66cd77851a96ba747_***_Oskar Sandberg
d20976a5892074dae0368a4bb4433f76_***_Nasim Zarrabi
31e8fe57fa180d418afd48c3af280c2e_***_Paul Meredith
22b270622d739d81e131bec7a819e2fd_***_Ardalan Armin
author Stefan Zeiske
Oskar Sandberg
Nasim Zarrabi
Paul Meredith
Ardalan Armin
author2 Stefan Zeiske
Oskar Sandberg
Nasim Zarrabi
Christian M. Wolff
Meysam Raoufi
Francisco Peña-Camargo
Emilio Gutierrez-Partida
Paul Meredith
Martin Stolterfoht
Ardalan Armin
format Journal article
container_title The Journal of Physical Chemistry Letters
container_volume 13
container_issue 31
container_start_page 7280
publishDate 2022
institution Swansea University
issn 1948-7185
1948-7185
doi_str_mv 10.1021/acs.jpclett.2c01652
publisher American Chemical Society (ACS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 ± 1.0, 13.2 ± 1.0, and 13.5 ± 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ± 0.5, 4.7 ± 0.3, and 3.3 ± 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices.
published_date 2022-08-11T20:13:38Z
_version_ 1821347171635560448
score 11.04748