Journal article 994 views 185 downloads
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds
Feng-yu Wang
Journal of the European Mathematical Society, Volume: 25, Issue: 9
Swansea University Author: Feng-yu Wang
-
PDF | Accepted Manuscript
Download (364.88KB)
DOI (Published version): 10.4171/jems/1269
Abstract
Let M be a d-dimensional connected compact Riemannian manifold with boundary ∂M, let V∈C2(M) such that μ(dx):=eV(x)dx is a probability measure, and let Xt be the diffusion process generated by L:=Δ+∇V with τ:=inf{t≥0:Xt∈∂M}. Consider the empirical measure μt:=1t∫t0δXsds under the condition t<τ fo...
| Published in: | Journal of the European Mathematical Society |
|---|---|
| ISSN: | 1435-9855 1435-9863 |
| Published: |
European Mathematical Society - EMS - Publishing House GmbH
2022
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa60533 |
| first_indexed |
2022-07-19T10:57:56Z |
|---|---|
| last_indexed |
2025-05-16T08:16:37Z |
| id |
cronfa60533 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-05-15T16:04:15.8056318</datestamp><bib-version>v2</bib-version><id>60533</id><entry>2022-07-19</entry><title>Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-19</date><abstract>Let M be a d-dimensional connected compact Riemannian manifold with boundary ∂M, let V∈C2(M) such that μ(dx):=eV(x)dx is a probability measure, and let Xt be the diffusion process generated by L:=Δ+∇V with τ:=inf{t≥0:Xt∈∂M}. Consider the empirical measure μt:=1t∫t0δXsds under the condition t<τ for the diffusion process. If d≤3, then for any initial distribution not fully supported on ∂M,c∑m=1∞2(λm−λ0)2≤lim inft→∞infT≥t{tE[W2(μt,μ0)2∣∣T<τ]}≤lim supt→∞supT≥t{tE[W2(μt,μ0)2∣∣T<τ]}≤∑m=1∞2(λm−λ0)2holds for some constant c∈(0,1] with c=1 when ∂M is convex, where μ0:=ϕ20μ for the first Dirichet eigenfunction ϕ0 of L, {λm}m≥0 are the Dirichlet eigenvalues of −L listed in the increasing order counting multiplicities, and the upper bound is finite if and only if d≤3. When d=4, supT≥tE[W2(μt,μ0)2∣∣T<τ] decays in the order t−1logt, while for d≥5 it behaves like t−2d−2, as t→∞.</abstract><type>Journal Article</type><journal>Journal of the European Mathematical Society</journal><volume>25</volume><journalNumber>9</journalNumber><paginationStart/><paginationEnd/><publisher>European Mathematical Society - EMS - Publishing House GmbH</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1435-9855</issnPrint><issnElectronic>1435-9863</issnElectronic><keywords>Conditional empirical measure, Dirichlet diffusion process, Wasserstein distance, eigenvalues, eigenfunctions.</keywords><publishedDay>3</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-09-03</publishedDate><doi>10.4171/jems/1269</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>Supported in part by the National Key R&D Program of China (No. 2020YFA0712900) and NNSFC (11831014, 11921001).</funders><projectreference/><lastEdited>2025-05-15T16:04:15.8056318</lastEdited><Created>2022-07-19T11:54:39.1002150</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author></authors><documents><document><filename>60533__24634__78aa3871522549abbb6e596707fbc782.pdf</filename><originalFilename>60533.pdf</originalFilename><uploaded>2022-07-19T11:57:46.1178606</uploaded><type>Output</type><contentLength>373635</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-05-15T16:04:15.8056318 v2 60533 2022-07-19 Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2022-07-19 Let M be a d-dimensional connected compact Riemannian manifold with boundary ∂M, let V∈C2(M) such that μ(dx):=eV(x)dx is a probability measure, and let Xt be the diffusion process generated by L:=Δ+∇V with τ:=inf{t≥0:Xt∈∂M}. Consider the empirical measure μt:=1t∫t0δXsds under the condition t<τ for the diffusion process. If d≤3, then for any initial distribution not fully supported on ∂M,c∑m=1∞2(λm−λ0)2≤lim inft→∞infT≥t{tE[W2(μt,μ0)2∣∣T<τ]}≤lim supt→∞supT≥t{tE[W2(μt,μ0)2∣∣T<τ]}≤∑m=1∞2(λm−λ0)2holds for some constant c∈(0,1] with c=1 when ∂M is convex, where μ0:=ϕ20μ for the first Dirichet eigenfunction ϕ0 of L, {λm}m≥0 are the Dirichlet eigenvalues of −L listed in the increasing order counting multiplicities, and the upper bound is finite if and only if d≤3. When d=4, supT≥tE[W2(μt,μ0)2∣∣T<τ] decays in the order t−1logt, while for d≥5 it behaves like t−2d−2, as t→∞. Journal Article Journal of the European Mathematical Society 25 9 European Mathematical Society - EMS - Publishing House GmbH 1435-9855 1435-9863 Conditional empirical measure, Dirichlet diffusion process, Wasserstein distance, eigenvalues, eigenfunctions. 3 9 2022 2022-09-03 10.4171/jems/1269 COLLEGE NANME COLLEGE CODE Swansea University Supported in part by the National Key R&D Program of China (No. 2020YFA0712900) and NNSFC (11831014, 11921001). 2025-05-15T16:04:15.8056318 2022-07-19T11:54:39.1002150 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1 60533__24634__78aa3871522549abbb6e596707fbc782.pdf 60533.pdf 2022-07-19T11:57:46.1178606 Output 373635 application/pdf Accepted Manuscript true true eng |
| title |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds |
| spellingShingle |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds Feng-yu Wang |
| title_short |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds |
| title_full |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds |
| title_fullStr |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds |
| title_full_unstemmed |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds |
| title_sort |
Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds |
| author_id_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de |
| author_id_fullname_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang |
| author |
Feng-yu Wang |
| author2 |
Feng-yu Wang |
| format |
Journal article |
| container_title |
Journal of the European Mathematical Society |
| container_volume |
25 |
| container_issue |
9 |
| publishDate |
2022 |
| institution |
Swansea University |
| issn |
1435-9855 1435-9863 |
| doi_str_mv |
10.4171/jems/1269 |
| publisher |
European Mathematical Society - EMS - Publishing House GmbH |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| document_store_str |
1 |
| active_str |
0 |
| description |
Let M be a d-dimensional connected compact Riemannian manifold with boundary ∂M, let V∈C2(M) such that μ(dx):=eV(x)dx is a probability measure, and let Xt be the diffusion process generated by L:=Δ+∇V with τ:=inf{t≥0:Xt∈∂M}. Consider the empirical measure μt:=1t∫t0δXsds under the condition t<τ for the diffusion process. If d≤3, then for any initial distribution not fully supported on ∂M,c∑m=1∞2(λm−λ0)2≤lim inft→∞infT≥t{tE[W2(μt,μ0)2∣∣T<τ]}≤lim supt→∞supT≥t{tE[W2(μt,μ0)2∣∣T<τ]}≤∑m=1∞2(λm−λ0)2holds for some constant c∈(0,1] with c=1 when ∂M is convex, where μ0:=ϕ20μ for the first Dirichet eigenfunction ϕ0 of L, {λm}m≥0 are the Dirichlet eigenvalues of −L listed in the increasing order counting multiplicities, and the upper bound is finite if and only if d≤3. When d=4, supT≥tE[W2(μt,μ0)2∣∣T<τ] decays in the order t−1logt, while for d≥5 it behaves like t−2d−2, as t→∞. |
| published_date |
2022-09-03T05:05:01Z |
| _version_ |
1851096407674454016 |
| score |
11.089572 |

