Conference Paper/Proceeding/Abstract 790 views 65 downloads
Machine learning with quantum field theories
Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021), Volume: 396
Swansea University Authors: Dimitrios Bachtis, Gert Aarts , Biagio Lucini
-
PDF | Version of Record
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
Download (970.75KB)
DOI (Published version): 10.22323/1.396.0201
Abstract
The precise equivalence between discretized Euclidean field theories and a certain class of probabilistic graphical models, namely the mathematical framework of Markov random fields, opens up the opportunity to investigate machine learning from the perspective of quantum field theory. In this contri...
Published in: | Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) |
---|---|
ISSN: | 1824-8039 |
Published: |
Trieste, Italy
Sissa Medialab
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60431 |
first_indexed |
2022-07-08T19:50:02Z |
---|---|
last_indexed |
2023-01-13T19:20:33Z |
id |
cronfa60431 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-07-11T14:48:51.3148718</datestamp><bib-version>v2</bib-version><id>60431</id><entry>2022-07-08</entry><title>Machine learning with quantum field theories</title><swanseaauthors><author><sid>91a311a58d3f8badc779f0ffa6d0ca3d</sid><firstname>Dimitrios</firstname><surname>Bachtis</surname><name>Dimitrios Bachtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-08</date><deptcode>BGPS</deptcode><abstract>The precise equivalence between discretized Euclidean field theories and a certain class of probabilistic graphical models, namely the mathematical framework of Markov random fields, opens up the opportunity to investigate machine learning from the perspective of quantum field theory. In this contribution we will demonstrate, through the Hammersley-Clifford theorem, that the ϕ4 scalar field theory on a square lattice satisfies the local Markov property and can therefore be recast as a Markov random field. We will then derive from the ϕ4 theory machine learning algorithms and neural networks which can be viewed as generalizations of conventional neural network architectures. Finally, we will conclude by presenting applications based on the minimization of an asymmetric distance between the probability distribution of the ϕ4 machine learning algorithms and target probability distributions.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021)</journal><volume>396</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Sissa Medialab</publisher><placeOfPublication>Trieste, Italy</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1824-8039</issnElectronic><keywords/><publishedDay>8</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-08</publishedDate><doi>10.22323/1.396.0201</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>ERC, STFC. Leverhulme Foundation, Royal Society, ERDF</funders><projectreference>813942, WM170010 , RF-2020-461\9, ST/T000813/1</projectreference><lastEdited>2022-07-11T14:48:51.3148718</lastEdited><Created>2022-07-08T20:47:40.4075075</Created><path><level id="1">College of Science</level><level id="2">College of Science</level></path><authors><author><firstname>Dimitrios</firstname><surname>Bachtis</surname><order>1</order></author><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>2</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>3</order></author></authors><documents><document><filename>60431__24522__27c1d051b3f24a4a8d752afcdc699aa6.pdf</filename><originalFilename>LATTICE2021_201.pdf</originalFilename><uploaded>2022-07-08T20:49:18.7212439</uploaded><type>Output</type><contentLength>994049</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-07-11T14:48:51.3148718 v2 60431 2022-07-08 Machine learning with quantum field theories 91a311a58d3f8badc779f0ffa6d0ca3d Dimitrios Bachtis Dimitrios Bachtis true false 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 2022-07-08 BGPS The precise equivalence between discretized Euclidean field theories and a certain class of probabilistic graphical models, namely the mathematical framework of Markov random fields, opens up the opportunity to investigate machine learning from the perspective of quantum field theory. In this contribution we will demonstrate, through the Hammersley-Clifford theorem, that the ϕ4 scalar field theory on a square lattice satisfies the local Markov property and can therefore be recast as a Markov random field. We will then derive from the ϕ4 theory machine learning algorithms and neural networks which can be viewed as generalizations of conventional neural network architectures. Finally, we will conclude by presenting applications based on the minimization of an asymmetric distance between the probability distribution of the ϕ4 machine learning algorithms and target probability distributions. Conference Paper/Proceeding/Abstract Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) 396 Sissa Medialab Trieste, Italy 1824-8039 8 7 2022 2022-07-08 10.22323/1.396.0201 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Another institution paid the OA fee ERC, STFC. Leverhulme Foundation, Royal Society, ERDF 813942, WM170010 , RF-2020-461\9, ST/T000813/1 2022-07-11T14:48:51.3148718 2022-07-08T20:47:40.4075075 College of Science College of Science Dimitrios Bachtis 1 Gert Aarts 0000-0002-6038-3782 2 Biagio Lucini 0000-0001-8974-8266 3 60431__24522__27c1d051b3f24a4a8d752afcdc699aa6.pdf LATTICE2021_201.pdf 2022-07-08T20:49:18.7212439 Output 994049 application/pdf Version of Record true © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Machine learning with quantum field theories |
spellingShingle |
Machine learning with quantum field theories Dimitrios Bachtis Gert Aarts Biagio Lucini |
title_short |
Machine learning with quantum field theories |
title_full |
Machine learning with quantum field theories |
title_fullStr |
Machine learning with quantum field theories |
title_full_unstemmed |
Machine learning with quantum field theories |
title_sort |
Machine learning with quantum field theories |
author_id_str_mv |
91a311a58d3f8badc779f0ffa6d0ca3d 1ba0dad382dfe18348ec32fc65f3f3de 7e6fcfe060e07a351090e2a8aba363cf |
author_id_fullname_str_mv |
91a311a58d3f8badc779f0ffa6d0ca3d_***_Dimitrios Bachtis 1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini |
author |
Dimitrios Bachtis Gert Aarts Biagio Lucini |
author2 |
Dimitrios Bachtis Gert Aarts Biagio Lucini |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) |
container_volume |
396 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1824-8039 |
doi_str_mv |
10.22323/1.396.0201 |
publisher |
Sissa Medialab |
college_str |
College of Science |
hierarchytype |
|
hierarchy_top_id |
collegeofscience |
hierarchy_top_title |
College of Science |
hierarchy_parent_id |
collegeofscience |
hierarchy_parent_title |
College of Science |
department_str |
College of Science{{{_:::_}}}College of Science{{{_:::_}}}College of Science |
document_store_str |
1 |
active_str |
0 |
description |
The precise equivalence between discretized Euclidean field theories and a certain class of probabilistic graphical models, namely the mathematical framework of Markov random fields, opens up the opportunity to investigate machine learning from the perspective of quantum field theory. In this contribution we will demonstrate, through the Hammersley-Clifford theorem, that the ϕ4 scalar field theory on a square lattice satisfies the local Markov property and can therefore be recast as a Markov random field. We will then derive from the ϕ4 theory machine learning algorithms and neural networks which can be viewed as generalizations of conventional neural network architectures. Finally, we will conclude by presenting applications based on the minimization of an asymmetric distance between the probability distribution of the ϕ4 machine learning algorithms and target probability distributions. |
published_date |
2022-07-08T20:13:01Z |
_version_ |
1821347132016164864 |
score |
11.04748 |