Journal article 781 views 69 downloads
Quantum field theories, Markov random fields and machine learning
Journal of Physics: Conference Series, Volume: 2207, Issue: 1, Start page: 012056
Swansea University Authors: Dimitrios Bachtis, Gert Aarts , Biagio Lucini
-
PDF | Version of Record
Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence
Download (1.11MB)
DOI (Published version): 10.1088/1742-6596/2207/1/012056
Abstract
The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the ϕ4 latt...
Published in: | Journal of Physics: Conference Series |
---|---|
ISSN: | 1742-6588 1742-6596 |
Published: |
IOP Publishing
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60429 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-07-08T19:09:41Z |
---|---|
last_indexed |
2023-01-13T19:20:33Z |
id |
cronfa60429 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>60429</id><entry>2022-07-08</entry><title>Quantum field theories, Markov random fields and machine learning</title><swanseaauthors><author><sid>91a311a58d3f8badc779f0ffa6d0ca3d</sid><firstname>Dimitrios</firstname><surname>Bachtis</surname><name>Dimitrios Bachtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-08</date><deptcode>SPH</deptcode><abstract>The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the ϕ4 lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable class of probabilistic graphical models with applications in a variety of research areas, including machine learning. The results are established based on the Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories and discuss applications pertinent to the minimization of the Kullback-Leibler divergence for the probability distribution of the ϕ4 machine learning algorithms and other probability distributions.</abstract><type>Journal Article</type><journal>Journal of Physics: Conference Series</journal><volume>2207</volume><journalNumber>1</journalNumber><paginationStart>012056</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1742-6588</issnPrint><issnElectronic>1742-6596</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-01</publishedDate><doi>10.1088/1742-6596/2207/1/012056</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>ERC, STFC. Leverhulme Foundation, Royal Society, ERDF (Welsh Government)
813942, WM170010 , RF-2020-461\9, ST/T000813/1</funders><projectreference>813942, WM170010 , RF-2020-461\9, ST/T000813/1</projectreference><lastEdited>2023-06-23T15:42:16.1536474</lastEdited><Created>2022-07-08T20:04:46.1261301</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2"/></path><authors><author><firstname>Dimitrios</firstname><surname>Bachtis</surname><order>1</order></author><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>2</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>3</order></author></authors><documents><document><filename>60429__24519__dc201574c4494352b5f9e7d58de300ce.pdf</filename><originalFilename>Bachtis_2022_J._Phys.__Conf._Ser._2207_012056.pdf</originalFilename><uploaded>2022-07-08T20:07:21.4798388</uploaded><type>Output</type><contentLength>1165075</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 60429 2022-07-08 Quantum field theories, Markov random fields and machine learning 91a311a58d3f8badc779f0ffa6d0ca3d Dimitrios Bachtis Dimitrios Bachtis true false 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 2022-07-08 SPH The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the ϕ4 lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable class of probabilistic graphical models with applications in a variety of research areas, including machine learning. The results are established based on the Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories and discuss applications pertinent to the minimization of the Kullback-Leibler divergence for the probability distribution of the ϕ4 machine learning algorithms and other probability distributions. Journal Article Journal of Physics: Conference Series 2207 1 012056 IOP Publishing 1742-6588 1742-6596 1 3 2022 2022-03-01 10.1088/1742-6596/2207/1/012056 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University Another institution paid the OA fee ERC, STFC. Leverhulme Foundation, Royal Society, ERDF (Welsh Government) 813942, WM170010 , RF-2020-461\9, ST/T000813/1 813942, WM170010 , RF-2020-461\9, ST/T000813/1 2023-06-23T15:42:16.1536474 2022-07-08T20:04:46.1261301 Faculty of Science and Engineering Dimitrios Bachtis 1 Gert Aarts 0000-0002-6038-3782 2 Biagio Lucini 0000-0001-8974-8266 3 60429__24519__dc201574c4494352b5f9e7d58de300ce.pdf Bachtis_2022_J._Phys.__Conf._Ser._2207_012056.pdf 2022-07-08T20:07:21.4798388 Output 1165075 application/pdf Version of Record true Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence true eng http://creativecommons.org/licenses/by/3.0 |
title |
Quantum field theories, Markov random fields and machine learning |
spellingShingle |
Quantum field theories, Markov random fields and machine learning Dimitrios Bachtis Gert Aarts Biagio Lucini |
title_short |
Quantum field theories, Markov random fields and machine learning |
title_full |
Quantum field theories, Markov random fields and machine learning |
title_fullStr |
Quantum field theories, Markov random fields and machine learning |
title_full_unstemmed |
Quantum field theories, Markov random fields and machine learning |
title_sort |
Quantum field theories, Markov random fields and machine learning |
author_id_str_mv |
91a311a58d3f8badc779f0ffa6d0ca3d 1ba0dad382dfe18348ec32fc65f3f3de 7e6fcfe060e07a351090e2a8aba363cf |
author_id_fullname_str_mv |
91a311a58d3f8badc779f0ffa6d0ca3d_***_Dimitrios Bachtis 1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini |
author |
Dimitrios Bachtis Gert Aarts Biagio Lucini |
author2 |
Dimitrios Bachtis Gert Aarts Biagio Lucini |
format |
Journal article |
container_title |
Journal of Physics: Conference Series |
container_volume |
2207 |
container_issue |
1 |
container_start_page |
012056 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1742-6588 1742-6596 |
doi_str_mv |
10.1088/1742-6596/2207/1/012056 |
publisher |
IOP Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the ϕ4 lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable class of probabilistic graphical models with applications in a variety of research areas, including machine learning. The results are established based on the Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories and discuss applications pertinent to the minimization of the Kullback-Leibler divergence for the probability distribution of the ϕ4 machine learning algorithms and other probability distributions. |
published_date |
2022-03-01T15:42:11Z |
_version_ |
1769504853329969152 |
score |
11.037581 |