Journal article 620 views
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning
IEEE Transactions on Vehicular Technology, Volume: 71, Issue: 6, Pages: 5960 - 5970
Swansea University Author: Scott Yang
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/tvt.2022.3160871
Abstract
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning
Published in: | IEEE Transactions on Vehicular Technology |
---|---|
ISSN: | 0018-9545 1939-9359 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60406 |
first_indexed |
2022-07-07T16:46:45Z |
---|---|
last_indexed |
2023-01-13T19:20:30Z |
id |
cronfa60406 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-07-07T17:46:54.1407489</datestamp><bib-version>v2</bib-version><id>60406</id><entry>2022-07-07</entry><title>Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning</title><swanseaauthors><author><sid>81dc663ca0e68c60908d35b1d2ec3a9b</sid><ORCID>0000-0002-6618-7483</ORCID><firstname>Scott</firstname><surname>Yang</surname><name>Scott Yang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-07</date><deptcode>MACS</deptcode><abstract/><type>Journal Article</type><journal>IEEE Transactions on Vehicular Technology</journal><volume>71</volume><journalNumber>6</journalNumber><paginationStart>5960</paginationStart><paginationEnd>5970</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0018-9545</issnPrint><issnElectronic>1939-9359</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-06-01</publishedDate><doi>10.1109/tvt.2022.3160871</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported in part by the National Natural Science Foundation of China under Grant 61976063, and in part by the Guangxi Natural Science Foundation under Grant 2021JJG170015.</funders><lastEdited>2022-07-07T17:46:54.1407489</lastEdited><Created>2022-07-07T17:42:53.9203143</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Junxiu</firstname><surname>Liu</surname><orcid>0000-0002-9790-1571</orcid><order>1</order></author><author><firstname>Sheng</firstname><surname>Qin</surname><orcid>0000-0001-7348-901x</orcid><order>2</order></author><author><firstname>Yuling</firstname><surname>Luo</surname><orcid>0000-0002-0117-4614</orcid><order>3</order></author><author><firstname>Yanhu</firstname><surname>Wang</surname><order>4</order></author><author><firstname>Scott</firstname><surname>Yang</surname><orcid>0000-0002-6618-7483</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2022-07-07T17:46:54.1407489 v2 60406 2022-07-07 Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning 81dc663ca0e68c60908d35b1d2ec3a9b 0000-0002-6618-7483 Scott Yang Scott Yang true false 2022-07-07 MACS Journal Article IEEE Transactions on Vehicular Technology 71 6 5960 5970 Institute of Electrical and Electronics Engineers (IEEE) 0018-9545 1939-9359 1 6 2022 2022-06-01 10.1109/tvt.2022.3160871 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University This work was supported in part by the National Natural Science Foundation of China under Grant 61976063, and in part by the Guangxi Natural Science Foundation under Grant 2021JJG170015. 2022-07-07T17:46:54.1407489 2022-07-07T17:42:53.9203143 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Junxiu Liu 0000-0002-9790-1571 1 Sheng Qin 0000-0001-7348-901x 2 Yuling Luo 0000-0002-0117-4614 3 Yanhu Wang 4 Scott Yang 0000-0002-6618-7483 5 |
title |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning |
spellingShingle |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning Scott Yang |
title_short |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning |
title_full |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning |
title_fullStr |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning |
title_full_unstemmed |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning |
title_sort |
Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning |
author_id_str_mv |
81dc663ca0e68c60908d35b1d2ec3a9b |
author_id_fullname_str_mv |
81dc663ca0e68c60908d35b1d2ec3a9b_***_Scott Yang |
author |
Scott Yang |
author2 |
Junxiu Liu Sheng Qin Yuling Luo Yanhu Wang Scott Yang |
format |
Journal article |
container_title |
IEEE Transactions on Vehicular Technology |
container_volume |
71 |
container_issue |
6 |
container_start_page |
5960 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0018-9545 1939-9359 |
doi_str_mv |
10.1109/tvt.2022.3160871 |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
0 |
active_str |
0 |
published_date |
2022-06-01T20:12:56Z |
_version_ |
1821347127286038528 |
score |
11.04748 |