No Cover Image

Journal article 803 views 57 downloads

Multi-physical modelling, design optimization and manufacturing of a composite dielectric solar absorber

Nikhar Khanna, Mohamed El Hachemi, Rubén Sevilla Orcid Logo, Oubay Hassan Orcid Logo, Kenneth Morgan Orcid Logo, Emanuele Barborini, Salim Belouettar Orcid Logo

Composites Part C: Open Access, Volume: 8, Start page: 100282

Swansea University Authors: Rubén Sevilla Orcid Logo, Oubay Hassan Orcid Logo, Kenneth Morgan Orcid Logo

  • 60203.pdf

    PDF | Version of Record

    © 2022 The Author(s). This is an open access article under the CC BY-NC-ND license

    Download (4.23MB)

Abstract

The work presented involves the multiphysical modelling, simulation and design optimization of a key component of a Solar Selective Coatings (SSC). The investigated SSC absorber consists of a near homogeneous distribution of nanoparticles of Titanium Nitride (TiN) in a matrix of Aluminium Nitride (A...

Full description

Published in: Composites Part C: Open Access
ISSN: 2666-6820
Published: Elsevier BV 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60203
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The work presented involves the multiphysical modelling, simulation and design optimization of a key component of a Solar Selective Coatings (SSC). The investigated SSC absorber consists of a near homogeneous distribution of nanoparticles of Titanium Nitride (TiN) in a matrix of Aluminium Nitride (AlN), to form a composite dielectric. With the aim of achieving high absorbance in the visible region of the spectrum and minimum reflectance in the infrared region of the spectrum, our work highlights the numerical design, the synthesis and optical characterization of a composite dielectric of approximately 500 nm thickness. A bottom-up approach for the preparation of a stack with alternate layers, consisting of a distribution of TiN nanoparticles with a layer of AlN on top, was adopted. The TiN nanoparticles, laid on a substrate (Silicon/Glass) by wet chemical method, are coated with conformal layer of AlN, via Plasma-enhanced Atomic Layer Deposition (PE-ALD). The control of the morphology at the nanoscale is fundamental in improving the optical performance of the material. For this reason, two composites were prepared. One starting with TiN dispersions made with dry TiN powder and deionized water, and the other with ready-made TiN dispersions. In both composites, the particles were 20–30 nm in diameter. In both the cases, fewer clusters of about 0.5–1 μm of TiN particles were present however, enough steps were taken to minimize these clusters into smaller particles. Parameters, such as the size of TiN nanoparticles, the thickness of AlN thin film, were revealed by the numerical simulations, performed using Wave-Optics module in COMSOL Multiphysics. The work showcased clearly compares the two kinds of composites, using scanning electron microscope, X-ray photoelectron spectroscopy and electrical conductivity measurement. In addition, the optical performance of the two prepared composites is used as a means of validating the computational model.
Keywords: Composite dielectric absorber; Multi-physics; Modelling; Design optimization; Manufacturing and testing
College: Faculty of Science and Engineering
Funders: We gratefully acknowledge the financial support provided by the FNR, Luxembourg, and EPSRC, United Kingdom, under grant INTER FNR –RCUK/ 1611584556.
Start Page: 100282