Journal article 678 views 19 downloads
Experimental and numerical investigation of the electro-mechanical response of particle filled elastomers - Part I: Experimental investigations
European Journal of Mechanics - A/Solids, Volume: 96, Start page: 104651
Swansea University Author: Mokarram Hossain
-
PDF | Accepted Manuscript
©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (27.07MB)
DOI (Published version): 10.1016/j.euromechsol.2022.104651
Abstract
Electro-active polymers (EAPs) have the ability to undergo large deformations upon the stimulation by an electric field. They offer new design possibilities in a variety of applications, such as simple soft and flexible actuators, stretchable sensors, and energy harvesters. In the subclass of dielec...
Published in: | European Journal of Mechanics - A/Solids |
---|---|
ISSN: | 0997-7538 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60199 |
Abstract: |
Electro-active polymers (EAPs) have the ability to undergo large deformations upon the stimulation by an electric field. They offer new design possibilities in a variety of applications, such as simple soft and flexible actuators, stretchable sensors, and energy harvesters. In the subclass of dielectric elastomers, the operation principle relies on the Coulomb forces between charged electrodes that deform the soft polymer. As the forces are dependent on the permittivity of the dielectric, the addition of filler particles with a high permittivity is a promising approach to increase the overall electro-mechanical coupling. This contribution presents the results of various mechanical and electro-mechanical experiments conducted with the silicone Elastosil P 7670 filled with Barium-Titanate particles. These experiments are performed in such a fashion that the obtained results are well suited for the identification of the necessary material parameters of an electro-viscoelastic modeling approach in Part II of this contribution (Mehnert et al. Submitted). |
---|---|
Keywords: |
Dielectric elastomers; Electro-active polymers; Electro-mechanics; Particle filled polymers |
College: |
Faculty of Science and Engineering |
Funders: |
M. Mehnert and P. Steinmann acknowledge the funding within the DFG project No. STE 544/52-2 and GRK2495/C. M. Hossain would like to extend his sincere appreciation to Engineering and Physical
Sciences Research Council (EPSRC) for an Impact Acceleration Award (EP/R511614/1). The financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer 326998133 - TRR 225 (subproject B09) to J. Faber is gratefully acknowledged. S. Chester acknowledges partial support from the US National Science Foundation under grant number CMMI-1751520. |
Start Page: |
104651 |