No Cover Image

Journal article 600 views 47 downloads

Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations

Helen Chadwick Orcid Logo, Mark F. Somers, Aisling Stewart, Yosef Alkoby, Thomas J.D. Carter, Dagmar Butkovicova Orcid Logo, Gil Alexandrowicz Orcid Logo

Nature Communications, Volume: 13

Swansea University Authors: Helen Chadwick Orcid Logo, Aisling Stewart, Yosef Alkoby, Dagmar Butkovicova Orcid Logo, Gil Alexandrowicz Orcid Logo

  • 59903.VOR.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License.

    Download (1.07MB)

Abstract

Rotational motion lies at the heart of intermolecular, molecule-surface chemistry and coldmolecule science, motivating the development of methods to excite and de-excite rotations.Existing schemes involve perturbing the molecules with photons or electrons which supply orremove energy comparable to t...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Nature 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59903
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-04-25T10:54:01Z
last_indexed 2022-05-05T03:32:09Z
id cronfa59903
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-05-04T11:54:17.7744066</datestamp><bib-version>v2</bib-version><id>59903</id><entry>2022-04-25</entry><title>Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations</title><swanseaauthors><author><sid>8ff1942a68a875f00d473d51aa4947a1</sid><ORCID>0000-0003-4119-6903</ORCID><firstname>Helen</firstname><surname>Chadwick</surname><name>Helen Chadwick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1b9a6f5d8a11831f745b2604738b0dce</sid><firstname>Aisling</firstname><surname>Stewart</surname><name>Aisling Stewart</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3ddda180e33166b4c459279027052f21</sid><firstname>Yosef</firstname><surname>Alkoby</surname><name>Yosef Alkoby</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6ff8a323e44fdcca17ff9b7f74896039</sid><ORCID>0000-0002-7494-0308</ORCID><firstname>Dagmar</firstname><surname>Butkovicova</surname><name>Dagmar Butkovicova</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1401818466c1114ae2035b811568a38e</sid><ORCID>0000-0003-3203-5577</ORCID><firstname>Gil</firstname><surname>Alexandrowicz</surname><name>Gil Alexandrowicz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-04-25</date><deptcode>CHEM</deptcode><abstract>Rotational motion lies at the heart of intermolecular, molecule-surface chemistry and coldmolecule science, motivating the development of methods to excite and de-excite rotations.Existing schemes involve perturbing the molecules with photons or electrons which supply orremove energy comparable to the rotational level spacing. Here, we study the possibility ofde-exciting the molecular rotation of a D2 molecule, from J = 2 to the non-rotatingJ = 0 state, without using an energy-matched perturbation. We show that passing the beamthrough a 1 m long magnetic field, which splits the rotational projection states by only10&#x2212;12 eV, can change the probability that a molecule-surface collision will stop a moleculefrom rotating and lose rotational energy which is 9 orders larger than that of the magneticmanipulation. Calculations confirm that different rotational orientations have different deexcitation probabilities but underestimate rotational flips (&#x394;mJ&#x2260;0), highlighting the importance of the results as a sensitive benchmark for further developing theoretical models ofmolecule-surface interactions.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>13</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Springer Nature</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords>Molecular rotations, chemistry</keywords><publishedDay>28</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-04-28</publishedDate><doi>10.1038/s41467-022-29830-3</doi><url/><notes>Supplementary information: The online version contains supplementary materialavailable at https://doi.org/10.1038/s41467-022-29830-3.</notes><college>COLLEGE NANME</college><department>Chemistry</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEM</DepartmentCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>The authors would like to thank Prof. Geert-Jan Kroes for stimulating scientific discussions and Prof. Mark Brouard for stimulating scientific discussions and critical reading of the manuscript. This work was funded by an ERC consolidator grant (Horizon 2020 Research and Innovation Programme grant 772228) (G. A.) and an EPSRC New Horizons grant (EP/V048589/1) (G. A.).</funders><projectreference>EP/V048589/1</projectreference><lastEdited>2022-05-04T11:54:17.7744066</lastEdited><Created>2022-04-25T11:52:18.4087064</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Helen</firstname><surname>Chadwick</surname><orcid>0000-0003-4119-6903</orcid><order>1</order></author><author><firstname>Mark F.</firstname><surname>Somers</surname><order>2</order></author><author><firstname>Aisling</firstname><surname>Stewart</surname><order>3</order></author><author><firstname>Yosef</firstname><surname>Alkoby</surname><order>4</order></author><author><firstname>Thomas J.D.</firstname><surname>Carter</surname><order>5</order></author><author><firstname>Dagmar</firstname><surname>Butkovicova</surname><orcid>0000-0002-7494-0308</orcid><order>6</order></author><author><firstname>Gil</firstname><surname>Alexandrowicz</surname><orcid>0000-0003-3203-5577</orcid><order>7</order></author></authors><documents><document><filename>59903__23940__d13b95c6bbf94ccdae6f29121ee0982f.pdf</filename><originalFilename>59903.VOR.pdf</originalFilename><uploaded>2022-04-29T15:40:30.6801970</uploaded><type>Output</type><contentLength>1121168</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-05-04T11:54:17.7744066 v2 59903 2022-04-25 Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations 8ff1942a68a875f00d473d51aa4947a1 0000-0003-4119-6903 Helen Chadwick Helen Chadwick true false 1b9a6f5d8a11831f745b2604738b0dce Aisling Stewart Aisling Stewart true false 3ddda180e33166b4c459279027052f21 Yosef Alkoby Yosef Alkoby true false 6ff8a323e44fdcca17ff9b7f74896039 0000-0002-7494-0308 Dagmar Butkovicova Dagmar Butkovicova true false 1401818466c1114ae2035b811568a38e 0000-0003-3203-5577 Gil Alexandrowicz Gil Alexandrowicz true false 2022-04-25 CHEM Rotational motion lies at the heart of intermolecular, molecule-surface chemistry and coldmolecule science, motivating the development of methods to excite and de-excite rotations.Existing schemes involve perturbing the molecules with photons or electrons which supply orremove energy comparable to the rotational level spacing. Here, we study the possibility ofde-exciting the molecular rotation of a D2 molecule, from J = 2 to the non-rotatingJ = 0 state, without using an energy-matched perturbation. We show that passing the beamthrough a 1 m long magnetic field, which splits the rotational projection states by only10−12 eV, can change the probability that a molecule-surface collision will stop a moleculefrom rotating and lose rotational energy which is 9 orders larger than that of the magneticmanipulation. Calculations confirm that different rotational orientations have different deexcitation probabilities but underestimate rotational flips (ΔmJ≠0), highlighting the importance of the results as a sensitive benchmark for further developing theoretical models ofmolecule-surface interactions. Journal Article Nature Communications 13 Springer Nature 2041-1723 Molecular rotations, chemistry 28 4 2022 2022-04-28 10.1038/s41467-022-29830-3 Supplementary information: The online version contains supplementary materialavailable at https://doi.org/10.1038/s41467-022-29830-3. COLLEGE NANME Chemistry COLLEGE CODE CHEM Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) The authors would like to thank Prof. Geert-Jan Kroes for stimulating scientific discussions and Prof. Mark Brouard for stimulating scientific discussions and critical reading of the manuscript. This work was funded by an ERC consolidator grant (Horizon 2020 Research and Innovation Programme grant 772228) (G. A.) and an EPSRC New Horizons grant (EP/V048589/1) (G. A.). EP/V048589/1 2022-05-04T11:54:17.7744066 2022-04-25T11:52:18.4087064 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Helen Chadwick 0000-0003-4119-6903 1 Mark F. Somers 2 Aisling Stewart 3 Yosef Alkoby 4 Thomas J.D. Carter 5 Dagmar Butkovicova 0000-0002-7494-0308 6 Gil Alexandrowicz 0000-0003-3203-5577 7 59903__23940__d13b95c6bbf94ccdae6f29121ee0982f.pdf 59903.VOR.pdf 2022-04-29T15:40:30.6801970 Output 1121168 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License. true eng http://creativecommons.org/licenses/by/4.0/
title Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
spellingShingle Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
Helen Chadwick
Aisling Stewart
Yosef Alkoby
Dagmar Butkovicova
Gil Alexandrowicz
title_short Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
title_full Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
title_fullStr Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
title_full_unstemmed Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
title_sort Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
author_id_str_mv 8ff1942a68a875f00d473d51aa4947a1
1b9a6f5d8a11831f745b2604738b0dce
3ddda180e33166b4c459279027052f21
6ff8a323e44fdcca17ff9b7f74896039
1401818466c1114ae2035b811568a38e
author_id_fullname_str_mv 8ff1942a68a875f00d473d51aa4947a1_***_Helen Chadwick
1b9a6f5d8a11831f745b2604738b0dce_***_Aisling Stewart
3ddda180e33166b4c459279027052f21_***_Yosef Alkoby
6ff8a323e44fdcca17ff9b7f74896039_***_Dagmar Butkovicova
1401818466c1114ae2035b811568a38e_***_Gil Alexandrowicz
author Helen Chadwick
Aisling Stewart
Yosef Alkoby
Dagmar Butkovicova
Gil Alexandrowicz
author2 Helen Chadwick
Mark F. Somers
Aisling Stewart
Yosef Alkoby
Thomas J.D. Carter
Dagmar Butkovicova
Gil Alexandrowicz
format Journal article
container_title Nature Communications
container_volume 13
publishDate 2022
institution Swansea University
issn 2041-1723
doi_str_mv 10.1038/s41467-022-29830-3
publisher Springer Nature
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry
document_store_str 1
active_str 0
description Rotational motion lies at the heart of intermolecular, molecule-surface chemistry and coldmolecule science, motivating the development of methods to excite and de-excite rotations.Existing schemes involve perturbing the molecules with photons or electrons which supply orremove energy comparable to the rotational level spacing. Here, we study the possibility ofde-exciting the molecular rotation of a D2 molecule, from J = 2 to the non-rotatingJ = 0 state, without using an energy-matched perturbation. We show that passing the beamthrough a 1 m long magnetic field, which splits the rotational projection states by only10−12 eV, can change the probability that a molecule-surface collision will stop a moleculefrom rotating and lose rotational energy which is 9 orders larger than that of the magneticmanipulation. Calculations confirm that different rotational orientations have different deexcitation probabilities but underestimate rotational flips (ΔmJ≠0), highlighting the importance of the results as a sensitive benchmark for further developing theoretical models ofmolecule-surface interactions.
published_date 2022-04-28T04:17:33Z
_version_ 1763754171566129152
score 11.014224