No Cover Image

Journal article 436 views 258 downloads

Adjustable Functionalization of Hyper-Cross-Linked Polymers of Intrinsic Microporosity for Enhanced CO2 Adsorption and Selectivity over N2 and CH4

Haoli Zhou, Christopher Rayer, Ariana Antonangelo, Tash Hawkins, Mariolino Carta Orcid Logo

ACS Applied Materials & Interfaces, Volume: 14, Issue: 18, Pages: 20997 - 21006

Swansea University Authors: Haoli Zhou, Ariana Antonangelo, Tash Hawkins, Mariolino Carta Orcid Logo

  • 59899.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY 4.0).

    Download (3.65MB)

Check full text

DOI (Published version): 10.1021/acsami.2c02604

Abstract

In this paper, we report the design, synthesis, and characterization of a series of hyper-cross-linked polymers of intrinsic microporosity (PIMs), with high CO2 uptake and good CO2/N2 and CO2/CH4 selectivity, which makes them competitive for carbon capture and biogas upgrading. The starting hydrocar...

Full description

Published in: ACS Applied Materials & Interfaces
ISSN: 1944-8244 1944-8252
Published: American Chemical Society (ACS) 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59899
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In this paper, we report the design, synthesis, and characterization of a series of hyper-cross-linked polymers of intrinsic microporosity (PIMs), with high CO2 uptake and good CO2/N2 and CO2/CH4 selectivity, which makes them competitive for carbon capture and biogas upgrading. The starting hydrocarbon polymers’ backbones were functionalized with groups such as −NO2, −NH2, and −HSO3, with the aim of tuning their adsorption selectivity toward CO2 over nitrogen and methane. This led to a significant improvement in the performance in the potential separation of these gases. All polymers were characterized via Fourier transform infrared (FTIR) spectroscopy and 13C solid-state NMR to confirm their molecular structures and isothermal gas adsorption to assess their porosity, pore size distribution, and selectivity. The insertion of the functional groups resulted in an overall decrease in the porosity of the starting polymers, which was compensated with an improvement in the final CO2 uptake and selectivity over the chosen gases. The best uptakes were achieved with the sulfonated polymers, which reached up to 298 mg g–1 (6.77 mmol g–1), whereas the best CO2/N2 selectivities were recorded by the aminated polymers, which reached 26.5. Regarding CH4, the most interesting selectivities over CO2 were also obtained with the aminated PIMs, with values up to 8.6. The reason for the improvements was ascribed to a synergetic contribution of porosity, choice of the functional group, and optimal isosteric heat of adsorption of the materials.
Keywords: polymers of intrinsic microporosity, isothermal gas adsorption, pore size distribution, selectivity, isosteric heat
College: Faculty of Science and Engineering
Funders: Swansea University Engineering and Physical Sciences Research Council - EP/T007362/1; China Scholarship Council - 201908320208
Issue: 18
Start Page: 20997
End Page: 21006