Journal article 765 views 65 downloads
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume: 380, Issue: 2233
Swansea University Authors: Daniel Archambault , Rita Borgo , Alma Rahat , Tom Torsney-Weir
-
PDF | Version of Record
Copyright: 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License
Download (1.16MB)
DOI (Published version): 10.1098/rsta.2021.0299
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling...
Published in: | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
---|---|
ISSN: | 1364-503X 1471-2962 |
Published: |
The Royal Society
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59890 |
first_indexed |
2022-04-20T12:04:10Z |
---|---|
last_indexed |
2024-11-14T12:16:19Z |
id |
cronfa59890 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-11-15T12:48:34.3478401</datestamp><bib-version>v2</bib-version><id>59890</id><entry>2022-04-20</entry><title>Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations</title><swanseaauthors><author><sid>8fa6987716a22304ef04d3c3d50ef266</sid><ORCID>0000-0003-4978-8479</ORCID><firstname>Daniel</firstname><surname>Archambault</surname><name>Daniel Archambault</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c4675d4072e4b2b3921ae57666f1d9ff</sid><ORCID>0000-0003-2875-6793</ORCID><firstname>Rita</firstname><surname>Borgo</surname><name>Rita Borgo</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6206f027aca1e3a5ff6b8cd224248bc2</sid><ORCID>0000-0002-5023-1371</ORCID><firstname>Alma</firstname><surname>Rahat</surname><name>Alma Rahat</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6675d91d11195ef4c16eefd3fa316474</sid><ORCID>0000-0002-0329-2198</ORCID><firstname>Tom</firstname><surname>Torsney-Weir</surname><name>Tom Torsney-Weir</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-04-20</date><deptcode>MACS</deptcode><abstract>We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond.</abstract><type>Journal Article</type><journal>Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences</journal><volume>380</volume><journalNumber>2233</journalNumber><paginationStart/><paginationEnd/><publisher>The Royal Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1364-503X</issnPrint><issnElectronic>1471-2962</issnElectronic><keywords>visualization, visual analytics, epidemiologicalmodelling, computational notebooks, visualdesign</keywords><publishedDay>3</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-10-03</publishedDate><doi>10.1098/rsta.2021.0299</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>RAMP VIS: Making Visual Analytics an Integral Part of the Technological Infrastructure for Combating COVID-19
Funder: Engineering and Physical Sciences Research Council (EPSRC)
Visual Analytics for Explaining and Analysing Contact Tracing Networks
Funder: Engineering and Physical Sciences Research Council (EPSRC)</funders><projectreference>Grant number: EP/V054236/1, Grant number: EP/V033670/1, UKRI/STFC grant ST/V006126/1</projectreference><lastEdited>2023-11-15T12:48:34.3478401</lastEdited><Created>2022-04-20T12:44:54.6568359</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Jason</firstname><surname>Dykes</surname><orcid>0000-0002-8096-5763</orcid><order>1</order></author><author><firstname>Alfie</firstname><surname>Abdul-Rahman</surname><orcid>0000-0002-6257-876x</orcid><order>2</order></author><author><firstname>Daniel</firstname><surname>Archambault</surname><orcid>0000-0003-4978-8479</orcid><order>3</order></author><author><firstname>Benjamin</firstname><surname>Bach</surname><orcid>0000-0002-9201-7744</orcid><order>4</order></author><author><firstname>Rita</firstname><surname>Borgo</surname><orcid>0000-0003-2875-6793</orcid><order>5</order></author><author><firstname>Min</firstname><surname>Chen</surname><orcid>0000-0001-5320-5729</orcid><order>6</order></author><author><firstname>Jessica</firstname><surname>Enright</surname><order>7</order></author><author><firstname>Hui</firstname><surname>Fang</surname><order>8</order></author><author><firstname>Elif E.</firstname><surname>Firat</surname><orcid>0000-0001-9497-7928</orcid><order>9</order></author><author><firstname>Euan</firstname><surname>Freeman</surname><orcid>0000-0002-6586-6951</orcid><order>10</order></author><author><firstname>Tuna</firstname><surname>Gönen</surname><orcid>0000-0002-0938-2522</orcid><order>11</order></author><author><firstname>Claire</firstname><surname>Harris</surname><orcid>0000-0003-0852-2340</orcid><order>12</order></author><author><firstname>Radu</firstname><surname>Jianu</surname><orcid>0000-0002-5834-2658</orcid><order>13</order></author><author><firstname>Nigel W.</firstname><surname>John</surname><orcid>0000-0001-5153-182x</orcid><order>14</order></author><author><firstname>Saiful</firstname><surname>Khan</surname><order>15</order></author><author><firstname>Andrew</firstname><surname>Lahiff</surname><orcid>0000-0002-2785-4116</orcid><order>16</order></author><author><firstname>Robert S.</firstname><surname>Laramee</surname><order>17</order></author><author><firstname>Louise</firstname><surname>Matthews</surname><orcid>0000-0003-4420-8367</orcid><order>18</order></author><author><firstname>Sibylle</firstname><surname>Mohr</surname><orcid>0000-0002-9089-6327</orcid><order>19</order></author><author><firstname>Phong H.</firstname><surname>Nguyen</surname><order>20</order></author><author><firstname>Alma</firstname><surname>Rahat</surname><orcid>0000-0002-5023-1371</orcid><order>21</order></author><author><firstname>Richard</firstname><surname>Reeve</surname><orcid>0000-0003-2589-8091</orcid><order>22</order></author><author><firstname>Panagiotis D.</firstname><surname>Ritsos</surname><orcid>0000-0001-9308-3885</orcid><order>23</order></author><author><firstname>Jonathan C.</firstname><surname>Roberts</surname><orcid>0000-0001-7718-3181</orcid><order>24</order></author><author><firstname>Aidan</firstname><surname>Slingsby</surname><orcid>0000-0003-3941-553x</orcid><order>25</order></author><author><firstname>Ben</firstname><surname>Swallow</surname><orcid>0000-0002-0227-2160</orcid><order>26</order></author><author><firstname>Tom</firstname><surname>Torsney-Weir</surname><orcid>0000-0002-0329-2198</orcid><order>27</order></author><author><firstname>Cagatay</firstname><surname>Turkay</surname><orcid>0000-0001-6788-251x</orcid><order>28</order></author><author><firstname>Robert</firstname><surname>Turner</surname><order>29</order></author><author><firstname>Franck P.</firstname><surname>Vidal</surname><orcid>0000-0002-2768-4524</orcid><order>30</order></author><author><firstname>Qiru</firstname><surname>Wang</surname><orcid>0000-0003-3397-308x</orcid><order>31</order></author><author><firstname>Jo</firstname><surname>Wood</surname><orcid>0000-0001-9270-247x</orcid><order>32</order></author><author><firstname>Kai</firstname><surname>Xu</surname><orcid>0000-0003-2242-5440</orcid><order>33</order></author></authors><documents><document><filename>59890__25809__83a6175acc314cb78ab726982cfc5938.pdf</filename><originalFilename>59890.pdf</originalFilename><uploaded>2022-11-16T14:57:06.0055981</uploaded><type>Output</type><contentLength>1217710</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: 2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-11-15T12:48:34.3478401 v2 59890 2022-04-20 Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations 8fa6987716a22304ef04d3c3d50ef266 0000-0003-4978-8479 Daniel Archambault Daniel Archambault true false c4675d4072e4b2b3921ae57666f1d9ff 0000-0003-2875-6793 Rita Borgo Rita Borgo true false 6206f027aca1e3a5ff6b8cd224248bc2 0000-0002-5023-1371 Alma Rahat Alma Rahat true false 6675d91d11195ef4c16eefd3fa316474 0000-0002-0329-2198 Tom Torsney-Weir Tom Torsney-Weir true false 2022-04-20 MACS We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. Journal Article Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 2233 The Royal Society 1364-503X 1471-2962 visualization, visual analytics, epidemiologicalmodelling, computational notebooks, visualdesign 3 10 2022 2022-10-03 10.1098/rsta.2021.0299 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Another institution paid the OA fee RAMP VIS: Making Visual Analytics an Integral Part of the Technological Infrastructure for Combating COVID-19 Funder: Engineering and Physical Sciences Research Council (EPSRC) Visual Analytics for Explaining and Analysing Contact Tracing Networks Funder: Engineering and Physical Sciences Research Council (EPSRC) Grant number: EP/V054236/1, Grant number: EP/V033670/1, UKRI/STFC grant ST/V006126/1 2023-11-15T12:48:34.3478401 2022-04-20T12:44:54.6568359 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Jason Dykes 0000-0002-8096-5763 1 Alfie Abdul-Rahman 0000-0002-6257-876x 2 Daniel Archambault 0000-0003-4978-8479 3 Benjamin Bach 0000-0002-9201-7744 4 Rita Borgo 0000-0003-2875-6793 5 Min Chen 0000-0001-5320-5729 6 Jessica Enright 7 Hui Fang 8 Elif E. Firat 0000-0001-9497-7928 9 Euan Freeman 0000-0002-6586-6951 10 Tuna Gönen 0000-0002-0938-2522 11 Claire Harris 0000-0003-0852-2340 12 Radu Jianu 0000-0002-5834-2658 13 Nigel W. John 0000-0001-5153-182x 14 Saiful Khan 15 Andrew Lahiff 0000-0002-2785-4116 16 Robert S. Laramee 17 Louise Matthews 0000-0003-4420-8367 18 Sibylle Mohr 0000-0002-9089-6327 19 Phong H. Nguyen 20 Alma Rahat 0000-0002-5023-1371 21 Richard Reeve 0000-0003-2589-8091 22 Panagiotis D. Ritsos 0000-0001-9308-3885 23 Jonathan C. Roberts 0000-0001-7718-3181 24 Aidan Slingsby 0000-0003-3941-553x 25 Ben Swallow 0000-0002-0227-2160 26 Tom Torsney-Weir 0000-0002-0329-2198 27 Cagatay Turkay 0000-0001-6788-251x 28 Robert Turner 29 Franck P. Vidal 0000-0002-2768-4524 30 Qiru Wang 0000-0003-3397-308x 31 Jo Wood 0000-0001-9270-247x 32 Kai Xu 0000-0003-2242-5440 33 59890__25809__83a6175acc314cb78ab726982cfc5938.pdf 59890.pdf 2022-11-16T14:57:06.0055981 Output 1217710 application/pdf Version of Record true Copyright: 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
spellingShingle |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations Daniel Archambault Rita Borgo Alma Rahat Tom Torsney-Weir |
title_short |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_full |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_fullStr |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_full_unstemmed |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
title_sort |
Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations |
author_id_str_mv |
8fa6987716a22304ef04d3c3d50ef266 c4675d4072e4b2b3921ae57666f1d9ff 6206f027aca1e3a5ff6b8cd224248bc2 6675d91d11195ef4c16eefd3fa316474 |
author_id_fullname_str_mv |
8fa6987716a22304ef04d3c3d50ef266_***_Daniel Archambault c4675d4072e4b2b3921ae57666f1d9ff_***_Rita Borgo 6206f027aca1e3a5ff6b8cd224248bc2_***_Alma Rahat 6675d91d11195ef4c16eefd3fa316474_***_Tom Torsney-Weir |
author |
Daniel Archambault Rita Borgo Alma Rahat Tom Torsney-Weir |
author2 |
Jason Dykes Alfie Abdul-Rahman Daniel Archambault Benjamin Bach Rita Borgo Min Chen Jessica Enright Hui Fang Elif E. Firat Euan Freeman Tuna Gönen Claire Harris Radu Jianu Nigel W. John Saiful Khan Andrew Lahiff Robert S. Laramee Louise Matthews Sibylle Mohr Phong H. Nguyen Alma Rahat Richard Reeve Panagiotis D. Ritsos Jonathan C. Roberts Aidan Slingsby Ben Swallow Tom Torsney-Weir Cagatay Turkay Robert Turner Franck P. Vidal Qiru Wang Jo Wood Kai Xu |
format |
Journal article |
container_title |
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
container_volume |
380 |
container_issue |
2233 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1364-503X 1471-2962 |
doi_str_mv |
10.1098/rsta.2021.0299 |
publisher |
The Royal Society |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs—a series of ideas, approaches and methods taken from existing visualization research and practice—deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. |
published_date |
2022-10-03T08:10:52Z |
_version_ |
1821392295796146176 |
score |
11.04748 |