No Cover Image

Journal article 802 views 365 downloads

Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis

Lai-Wan Wong Orcid Logo, Garry Wei-Han Tan Orcid Logo, Keng-Boon Ooi Orcid Logo, Binshan Lin Orcid Logo, Yogesh Dwivedi Orcid Logo

International Journal of Production Research, Volume: 62, Issue: 15, Pages: 5535 - 5555

Swansea University Author: Yogesh Dwivedi Orcid Logo

  • 59746.VOR.pdf

    PDF | Version of Record

    © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).

    Download (2.91MB)

Abstract

This study posits that the use of artificial intelligence (AI) enables supply chains (SCs) to dynamically react to volatile environments, and alleviate potentially costly decision-makings for small-medium enterprises (SMEs). Building on a resource-based view, this work examines the impact of AI on S...

Full description

Published in: International Journal of Production Research
ISSN: 0020-7543 1366-588X
Published: Informa UK Limited 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59746
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This study posits that the use of artificial intelligence (AI) enables supply chains (SCs) to dynamically react to volatile environments, and alleviate potentially costly decision-makings for small-medium enterprises (SMEs). Building on a resource-based view, this work examines the impact of AI on SC risk management for SMEs. A structural model comprising of AI-risk management capabilities, SC re-engineering capabilities and supply chain agility (SCA) was developed and tested based on data collected from executives, managers and senior managers of SMEs The main methodological approach used in this study is partial least squares-based structural equation modelling (PLS-SEM) and artificial neural network (ANN). The results identified the use of AI for risk management influences SC re-engineering capabilities and agility. Re-engineering capabilities further affect and mediate agility. PLS-SEM and ANN were compared and the results revealed consistency for models A and B. Current levels of demand uncertainties in the SC challenges managers in making complex trade-off decisions that require huge management resources in very limited time. With AI, it is possible to model various scenarios to answer crucial questions that archaic infrastructures are not able to. This study combines a multi-construct agility concept and identified non-linear relationships in the model.
Item Description: The data that support the findings of this study are available from the corresponding author Y. K. D. upon reasonable request.
Keywords: Supply chain agility, re-engineering capabilities, risk management, artificial intelligence, ANN, PLS-SEM
College: Faculty of Humanities and Social Sciences
Funders: Swansea University
Issue: 15
Start Page: 5535
End Page: 5555