Journal article 822 views 87 downloads
The Exponential Map for Hopf Algebras
Symmetry, Integrability and Geometry: Methods and Applications, Volume: 18, Issue: 2022
Swansea University Author: Edwin Beggs
-
PDF | Accepted Manuscript
The authors retain the copyright for their papers published in SIGMA under the terms of the Creative Commons Attribution-ShareAlike License .
Download (622.28KB)
DOI (Published version): 10.3842/sigma.2022.017
Abstract
We give an analogue of the classical exponential map on Lie groups for Hopf∗-algebras with differential calculus. The major difference with the classical case is the interpretation of the value of the exponential map, classically an element of the Lie group. We give interpretations as states on the...
Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
---|---|
ISSN: | 1815-0659 |
Published: |
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59445 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-02-23T15:47:00Z |
---|---|
last_indexed |
2023-01-11T14:40:43Z |
id |
cronfa59445 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>59445</id><entry>2022-02-23</entry><title>The Exponential Map for Hopf Algebras</title><swanseaauthors><author><sid>a0062e7cf6d68f05151560cdf9d14e75</sid><ORCID>0000-0002-3139-0983</ORCID><firstname>Edwin</firstname><surname>Beggs</surname><name>Edwin Beggs</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-02-23</date><deptcode>SMA</deptcode><abstract>We give an analogue of the classical exponential map on Lie groups for Hopf∗-algebras with differential calculus. The major difference with the classical case is the interpretation of the value of the exponential map, classically an element of the Lie group. We give interpretations as states on the Hopf algebra, elements of a Hilbert C ∗-bimodule of 1/2 densities and elements of the dual Hopf algebra. We give examples for complex valued functions on the groups S3 and Z, Woronowicz’s matrix quantum group Cq[SU2] and the Sweedler–Taft algebra.</abstract><type>Journal Article</type><journal>Symmetry, Integrability and Geometry: Methods and Applications</journal><volume>18</volume><journalNumber>2022</journalNumber><paginationStart/><paginationEnd/><publisher>SIGMA (Symmetry, Integrability and Geometry: Methods and Application)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1815-0659</issnElectronic><keywords>exponential map, Hopf algebras, geodesic</keywords><publishedDay>9</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-09</publishedDate><doi>10.3842/sigma.2022.017</doi><url>http://dx.doi.org/10.3842/sigma.2022.017</url><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-07-28T17:31:16.2617374</lastEdited><Created>2022-02-23T15:40:55.6731089</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Ghaliah</firstname><surname>Alhamzi</surname><order>1</order></author><author><firstname>(Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi</firstname><surname>Arabia)</surname><order>2</order></author><author><firstname>Edwin</firstname><surname>Beggs</surname><orcid>0000-0002-3139-0983</orcid><order>3</order></author></authors><documents><document><filename>59445__22445__b1ad4bd704f04c7ebfd7ddaa5b1caeca.pdf</filename><originalFilename>The Exponential Map for Hopf Algebra.pdf</originalFilename><uploaded>2022-02-23T15:44:30.4549961</uploaded><type>Output</type><contentLength>637218</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>The authors retain the copyright for their papers published in SIGMA under the terms of the Creative Commons Attribution-ShareAlike License .</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-sa/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 59445 2022-02-23 The Exponential Map for Hopf Algebras a0062e7cf6d68f05151560cdf9d14e75 0000-0002-3139-0983 Edwin Beggs Edwin Beggs true false 2022-02-23 SMA We give an analogue of the classical exponential map on Lie groups for Hopf∗-algebras with differential calculus. The major difference with the classical case is the interpretation of the value of the exponential map, classically an element of the Lie group. We give interpretations as states on the Hopf algebra, elements of a Hilbert C ∗-bimodule of 1/2 densities and elements of the dual Hopf algebra. We give examples for complex valued functions on the groups S3 and Z, Woronowicz’s matrix quantum group Cq[SU2] and the Sweedler–Taft algebra. Journal Article Symmetry, Integrability and Geometry: Methods and Applications 18 2022 SIGMA (Symmetry, Integrability and Geometry: Methods and Application) 1815-0659 exponential map, Hopf algebras, geodesic 9 3 2022 2022-03-09 10.3842/sigma.2022.017 http://dx.doi.org/10.3842/sigma.2022.017 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2023-07-28T17:31:16.2617374 2022-02-23T15:40:55.6731089 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Ghaliah Alhamzi 1 (Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia) 2 Edwin Beggs 0000-0002-3139-0983 3 59445__22445__b1ad4bd704f04c7ebfd7ddaa5b1caeca.pdf The Exponential Map for Hopf Algebra.pdf 2022-02-23T15:44:30.4549961 Output 637218 application/pdf Accepted Manuscript true The authors retain the copyright for their papers published in SIGMA under the terms of the Creative Commons Attribution-ShareAlike License . true eng http://creativecommons.org/licenses/by-sa/4.0/ |
title |
The Exponential Map for Hopf Algebras |
spellingShingle |
The Exponential Map for Hopf Algebras Edwin Beggs |
title_short |
The Exponential Map for Hopf Algebras |
title_full |
The Exponential Map for Hopf Algebras |
title_fullStr |
The Exponential Map for Hopf Algebras |
title_full_unstemmed |
The Exponential Map for Hopf Algebras |
title_sort |
The Exponential Map for Hopf Algebras |
author_id_str_mv |
a0062e7cf6d68f05151560cdf9d14e75 |
author_id_fullname_str_mv |
a0062e7cf6d68f05151560cdf9d14e75_***_Edwin Beggs |
author |
Edwin Beggs |
author2 |
Ghaliah Alhamzi (Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia) Edwin Beggs |
format |
Journal article |
container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
container_volume |
18 |
container_issue |
2022 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1815-0659 |
doi_str_mv |
10.3842/sigma.2022.017 |
publisher |
SIGMA (Symmetry, Integrability and Geometry: Methods and Application) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.3842/sigma.2022.017 |
document_store_str |
1 |
active_str |
0 |
description |
We give an analogue of the classical exponential map on Lie groups for Hopf∗-algebras with differential calculus. The major difference with the classical case is the interpretation of the value of the exponential map, classically an element of the Lie group. We give interpretations as states on the Hopf algebra, elements of a Hilbert C ∗-bimodule of 1/2 densities and elements of the dual Hopf algebra. We give examples for complex valued functions on the groups S3 and Z, Woronowicz’s matrix quantum group Cq[SU2] and the Sweedler–Taft algebra. |
published_date |
2022-03-09T17:31:11Z |
_version_ |
1772682604519096320 |
score |
11.037144 |