No Cover Image

Journal article 866 views 524 downloads

Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells

Jonathan Warby Orcid Logo, Fengshuo Zu Orcid Logo, Stefan Zeiske, Emilio Gutierrez‐Partida, Lennart Frohloff, Simon Kahmann, Kyle Frohna, Edoardo Mosconi, Eros Radicchi, Felix Lang, Sahil Shah, Francisco Peña‐Camargo, Hannes Hempel, Thomas Unold, Norbert Koch, Ardalan Armin Orcid Logo, Filippo De Angelis, Samuel D. Stranks, Dieter Neher, Martin Stolterfoht Orcid Logo

Advanced Energy Materials, Volume: 12, Issue: 12, Start page: 2103567

Swansea University Authors: Stefan Zeiske, Ardalan Armin Orcid Logo

  • aenm.202103567.pdf

    PDF | Version of Record

    © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License

    Download (2.58MB)

Check full text

DOI (Published version): 10.1002/aenm.202103567

Abstract

Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunct...

Full description

Published in: Advanced Energy Materials
ISSN: 1614-6832 1614-6840
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59391
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-02-14T10:17:01Z
last_indexed 2022-04-14T03:31:17Z
id cronfa59391
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-04-13T16:27:19.9207924</datestamp><bib-version>v2</bib-version><id>59391</id><entry>2022-02-14</entry><title>Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells</title><swanseaauthors><author><sid>0c9c5b89df9ac882c3e09dd1a9f28fc5</sid><firstname>Stefan</firstname><surname>Zeiske</surname><name>Stefan Zeiske</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b270622d739d81e131bec7a819e2fd</sid><ORCID>0000-0002-6129-5354</ORCID><firstname>Ardalan</firstname><surname>Armin</surname><name>Ardalan Armin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-02-14</date><deptcode>SPH</deptcode><abstract>Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto&#x2010;electronic properties and their successful integration into multijunction cells. However, the performance of single&#x2010; and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first&#x2010;principle numerical simulations. It is found that the most significant contribution to the total C60&#x2010;induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>12</volume><journalNumber>12</journalNumber><paginationStart>2103567</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords>C 60, defects, interface recombination, loss mechanisms, perovskites, solar cells</keywords><publishedDay>9</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-02-09</publishedDate><doi>10.1002/aenm.202103567</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Deutsche Forschungsgemeinschaft. Grant Numbers: SURPRISE 423749265, HIPSTER 424709669; Federal Ministry for Economic Affairs and Energy. Grant Numbers: P3T-HOPE, 03EE1017C; Alexander von Humboldt Foundation</funders><lastEdited>2022-04-13T16:27:19.9207924</lastEdited><Created>2022-02-14T10:13:54.5779554</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Jonathan</firstname><surname>Warby</surname><orcid>0000-0003-3518-173x</orcid><order>1</order></author><author><firstname>Fengshuo</firstname><surname>Zu</surname><orcid>0000-0002-5861-4887</orcid><order>2</order></author><author><firstname>Stefan</firstname><surname>Zeiske</surname><order>3</order></author><author><firstname>Emilio</firstname><surname>Gutierrez&#x2010;Partida</surname><order>4</order></author><author><firstname>Lennart</firstname><surname>Frohloff</surname><order>5</order></author><author><firstname>Simon</firstname><surname>Kahmann</surname><order>6</order></author><author><firstname>Kyle</firstname><surname>Frohna</surname><order>7</order></author><author><firstname>Edoardo</firstname><surname>Mosconi</surname><order>8</order></author><author><firstname>Eros</firstname><surname>Radicchi</surname><order>9</order></author><author><firstname>Felix</firstname><surname>Lang</surname><order>10</order></author><author><firstname>Sahil</firstname><surname>Shah</surname><order>11</order></author><author><firstname>Francisco</firstname><surname>Pe&#xF1;a&#x2010;Camargo</surname><order>12</order></author><author><firstname>Hannes</firstname><surname>Hempel</surname><order>13</order></author><author><firstname>Thomas</firstname><surname>Unold</surname><order>14</order></author><author><firstname>Norbert</firstname><surname>Koch</surname><order>15</order></author><author><firstname>Ardalan</firstname><surname>Armin</surname><orcid>0000-0002-6129-5354</orcid><order>16</order></author><author><firstname>Filippo De</firstname><surname>Angelis</surname><order>17</order></author><author><firstname>Samuel D.</firstname><surname>Stranks</surname><order>18</order></author><author><firstname>Dieter</firstname><surname>Neher</surname><order>19</order></author><author><firstname>Martin</firstname><surname>Stolterfoht</surname><orcid>0000-0002-4023-2178</orcid><order>20</order></author></authors><documents><document><filename>59391__22370__4f3425d2018e4dd49cc11ead5fc86dac.pdf</filename><originalFilename>aenm.202103567.pdf</originalFilename><uploaded>2022-02-14T10:13:54.5715301</uploaded><type>Output</type><contentLength>2700328</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-04-13T16:27:19.9207924 v2 59391 2022-02-14 Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells 0c9c5b89df9ac882c3e09dd1a9f28fc5 Stefan Zeiske Stefan Zeiske true false 22b270622d739d81e131bec7a819e2fd 0000-0002-6129-5354 Ardalan Armin Ardalan Armin true false 2022-02-14 SPH Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. Journal Article Advanced Energy Materials 12 12 2103567 Wiley 1614-6832 1614-6840 C 60, defects, interface recombination, loss mechanisms, perovskites, solar cells 9 2 2022 2022-02-09 10.1002/aenm.202103567 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University Deutsche Forschungsgemeinschaft. Grant Numbers: SURPRISE 423749265, HIPSTER 424709669; Federal Ministry for Economic Affairs and Energy. Grant Numbers: P3T-HOPE, 03EE1017C; Alexander von Humboldt Foundation 2022-04-13T16:27:19.9207924 2022-02-14T10:13:54.5779554 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Jonathan Warby 0000-0003-3518-173x 1 Fengshuo Zu 0000-0002-5861-4887 2 Stefan Zeiske 3 Emilio Gutierrez‐Partida 4 Lennart Frohloff 5 Simon Kahmann 6 Kyle Frohna 7 Edoardo Mosconi 8 Eros Radicchi 9 Felix Lang 10 Sahil Shah 11 Francisco Peña‐Camargo 12 Hannes Hempel 13 Thomas Unold 14 Norbert Koch 15 Ardalan Armin 0000-0002-6129-5354 16 Filippo De Angelis 17 Samuel D. Stranks 18 Dieter Neher 19 Martin Stolterfoht 0000-0002-4023-2178 20 59391__22370__4f3425d2018e4dd49cc11ead5fc86dac.pdf aenm.202103567.pdf 2022-02-14T10:13:54.5715301 Output 2700328 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/
title Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
spellingShingle Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
Stefan Zeiske
Ardalan Armin
title_short Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
title_full Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
title_fullStr Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
title_full_unstemmed Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
title_sort Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
author_id_str_mv 0c9c5b89df9ac882c3e09dd1a9f28fc5
22b270622d739d81e131bec7a819e2fd
author_id_fullname_str_mv 0c9c5b89df9ac882c3e09dd1a9f28fc5_***_Stefan Zeiske
22b270622d739d81e131bec7a819e2fd_***_Ardalan Armin
author Stefan Zeiske
Ardalan Armin
author2 Jonathan Warby
Fengshuo Zu
Stefan Zeiske
Emilio Gutierrez‐Partida
Lennart Frohloff
Simon Kahmann
Kyle Frohna
Edoardo Mosconi
Eros Radicchi
Felix Lang
Sahil Shah
Francisco Peña‐Camargo
Hannes Hempel
Thomas Unold
Norbert Koch
Ardalan Armin
Filippo De Angelis
Samuel D. Stranks
Dieter Neher
Martin Stolterfoht
format Journal article
container_title Advanced Energy Materials
container_volume 12
container_issue 12
container_start_page 2103567
publishDate 2022
institution Swansea University
issn 1614-6832
1614-6840
doi_str_mv 10.1002/aenm.202103567
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.
published_date 2022-02-09T04:16:39Z
_version_ 1763754115072000000
score 11.037603