Journal article 866 views 524 downloads
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
Advanced Energy Materials, Volume: 12, Issue: 12, Start page: 2103567
Swansea University Authors: Stefan Zeiske, Ardalan Armin
-
PDF | Version of Record
© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License
Download (2.58MB)
DOI (Published version): 10.1002/aenm.202103567
Abstract
Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunct...
Published in: | Advanced Energy Materials |
---|---|
ISSN: | 1614-6832 1614-6840 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59391 |
first_indexed |
2022-02-14T10:17:01Z |
---|---|
last_indexed |
2022-04-14T03:31:17Z |
id |
cronfa59391 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-04-13T16:27:19.9207924</datestamp><bib-version>v2</bib-version><id>59391</id><entry>2022-02-14</entry><title>Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells</title><swanseaauthors><author><sid>0c9c5b89df9ac882c3e09dd1a9f28fc5</sid><firstname>Stefan</firstname><surname>Zeiske</surname><name>Stefan Zeiske</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b270622d739d81e131bec7a819e2fd</sid><firstname>Ardalan</firstname><surname>Armin</surname><name>Ardalan Armin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-02-14</date><deptcode>BGPS</deptcode><abstract>Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>12</volume><journalNumber>12</journalNumber><paginationStart>2103567</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords>C 60, defects, interface recombination, loss mechanisms, perovskites, solar cells</keywords><publishedDay>9</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-02-09</publishedDate><doi>10.1002/aenm.202103567</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Deutsche Forschungsgemeinschaft. Grant Numbers: SURPRISE 423749265, HIPSTER 424709669;
Federal Ministry for Economic Affairs and Energy. Grant Numbers: P3T-HOPE, 03EE1017C;
Alexander von Humboldt Foundation</funders><lastEdited>2022-04-13T16:27:19.9207924</lastEdited><Created>2022-02-14T10:13:54.5779554</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Jonathan</firstname><surname>Warby</surname><orcid>0000-0003-3518-173x</orcid><order>1</order></author><author><firstname>Fengshuo</firstname><surname>Zu</surname><orcid>0000-0002-5861-4887</orcid><order>2</order></author><author><firstname>Stefan</firstname><surname>Zeiske</surname><order>3</order></author><author><firstname>Emilio</firstname><surname>Gutierrez‐Partida</surname><order>4</order></author><author><firstname>Lennart</firstname><surname>Frohloff</surname><order>5</order></author><author><firstname>Simon</firstname><surname>Kahmann</surname><order>6</order></author><author><firstname>Kyle</firstname><surname>Frohna</surname><order>7</order></author><author><firstname>Edoardo</firstname><surname>Mosconi</surname><order>8</order></author><author><firstname>Eros</firstname><surname>Radicchi</surname><order>9</order></author><author><firstname>Felix</firstname><surname>Lang</surname><order>10</order></author><author><firstname>Sahil</firstname><surname>Shah</surname><order>11</order></author><author><firstname>Francisco</firstname><surname>Peña‐Camargo</surname><order>12</order></author><author><firstname>Hannes</firstname><surname>Hempel</surname><order>13</order></author><author><firstname>Thomas</firstname><surname>Unold</surname><order>14</order></author><author><firstname>Norbert</firstname><surname>Koch</surname><order>15</order></author><author><firstname>Ardalan</firstname><surname>Armin</surname><order>16</order></author><author><firstname>Filippo De</firstname><surname>Angelis</surname><order>17</order></author><author><firstname>Samuel D.</firstname><surname>Stranks</surname><order>18</order></author><author><firstname>Dieter</firstname><surname>Neher</surname><order>19</order></author><author><firstname>Martin</firstname><surname>Stolterfoht</surname><orcid>0000-0002-4023-2178</orcid><order>20</order></author></authors><documents><document><filename>59391__22370__4f3425d2018e4dd49cc11ead5fc86dac.pdf</filename><originalFilename>aenm.202103567.pdf</originalFilename><uploaded>2022-02-14T10:13:54.5715301</uploaded><type>Output</type><contentLength>2700328</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-04-13T16:27:19.9207924 v2 59391 2022-02-14 Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells 0c9c5b89df9ac882c3e09dd1a9f28fc5 Stefan Zeiske Stefan Zeiske true false 22b270622d739d81e131bec7a819e2fd Ardalan Armin Ardalan Armin true false 2022-02-14 BGPS Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. Journal Article Advanced Energy Materials 12 12 2103567 Wiley 1614-6832 1614-6840 C 60, defects, interface recombination, loss mechanisms, perovskites, solar cells 9 2 2022 2022-02-09 10.1002/aenm.202103567 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Deutsche Forschungsgemeinschaft. Grant Numbers: SURPRISE 423749265, HIPSTER 424709669; Federal Ministry for Economic Affairs and Energy. Grant Numbers: P3T-HOPE, 03EE1017C; Alexander von Humboldt Foundation 2022-04-13T16:27:19.9207924 2022-02-14T10:13:54.5779554 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Jonathan Warby 0000-0003-3518-173x 1 Fengshuo Zu 0000-0002-5861-4887 2 Stefan Zeiske 3 Emilio Gutierrez‐Partida 4 Lennart Frohloff 5 Simon Kahmann 6 Kyle Frohna 7 Edoardo Mosconi 8 Eros Radicchi 9 Felix Lang 10 Sahil Shah 11 Francisco Peña‐Camargo 12 Hannes Hempel 13 Thomas Unold 14 Norbert Koch 15 Ardalan Armin 16 Filippo De Angelis 17 Samuel D. Stranks 18 Dieter Neher 19 Martin Stolterfoht 0000-0002-4023-2178 20 59391__22370__4f3425d2018e4dd49cc11ead5fc86dac.pdf aenm.202103567.pdf 2022-02-14T10:13:54.5715301 Output 2700328 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells |
spellingShingle |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells Stefan Zeiske Ardalan Armin |
title_short |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells |
title_full |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells |
title_fullStr |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells |
title_full_unstemmed |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells |
title_sort |
Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells |
author_id_str_mv |
0c9c5b89df9ac882c3e09dd1a9f28fc5 22b270622d739d81e131bec7a819e2fd |
author_id_fullname_str_mv |
0c9c5b89df9ac882c3e09dd1a9f28fc5_***_Stefan Zeiske 22b270622d739d81e131bec7a819e2fd_***_Ardalan Armin |
author |
Stefan Zeiske Ardalan Armin |
author2 |
Jonathan Warby Fengshuo Zu Stefan Zeiske Emilio Gutierrez‐Partida Lennart Frohloff Simon Kahmann Kyle Frohna Edoardo Mosconi Eros Radicchi Felix Lang Sahil Shah Francisco Peña‐Camargo Hannes Hempel Thomas Unold Norbert Koch Ardalan Armin Filippo De Angelis Samuel D. Stranks Dieter Neher Martin Stolterfoht |
format |
Journal article |
container_title |
Advanced Energy Materials |
container_volume |
12 |
container_issue |
12 |
container_start_page |
2103567 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1614-6832 1614-6840 |
doi_str_mv |
10.1002/aenm.202103567 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto‐electronic properties and their successful integration into multijunction cells. However, the performance of single‐ and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first‐principle numerical simulations. It is found that the most significant contribution to the total C60‐induced recombination loss occurs within the first monolayer of C60, rather than in the bulk of C60 or at the perovskite surface. The experiments show that the C60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. |
published_date |
2022-02-09T08:09:20Z |
_version_ |
1821392199567278080 |
score |
11.047501 |