Journal article 659 views 126 downloads
Hematodinium sp. infection does not drive collateral disease contraction in a crustacean host
eLife, Volume: 11
Swansea University Authors: Charlotte Davies , Sophie Malkin, Frederico Batista, Andrew Rowley, Christopher Coates, Jess Bevan
-
PDF | Version of Record
Copyright Davies et al. This article is distributed under the terms of the Creative Commons Attribution License
Download (10.51MB)
DOI (Published version): 10.7554/elife.70356
Abstract
Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally – considered to suppress the innate defences of hosts, making t...
Published in: | eLife |
---|---|
ISSN: | 2050-084X |
Published: |
eLife Sciences Publications, Ltd
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59336 |
Abstract: |
Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally – considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open-water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium-positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1191 analysed. Crabs were interrogated for known additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity, or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity towards Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is not the proximal driver of co-infections in shore crabs, which suggests an evolutionary drive towards latency in this environmentally plastic host. |
---|---|
Keywords: |
aquatic vectors; carcinas maenas; carcinus maenas; disease connectivity; eDNA; ecology; endoparasites; immunology; immunopathology; inflammation; marine epizootiology; shore crabs |
College: |
Faculty of Science and Engineering |
Funders: |
This study was part-funded by the European Regional Development fund through the Ireland Wales
Cooperation Programme, BLUEFISH, awarded to CJC and AFR. AFR was also part-funded by the
BBSRC/NERC ARCH UK Aquaculture Initiative (BB/P017215/1), and start-up funds from Swansea
University assigned to CJC were used to supplement this study. |