Journal article 1084 views
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
Feng-yu Wang,
Jie-Xiang Zhu
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume: 59, Issue: 1
Swansea University Author: Feng-yu Wang
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1214/22-aihp1251
Abstract
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
| Published in: | Annales de l'Institut Henri Poincaré, Probabilités et Statistiques |
|---|---|
| ISSN: | 0246-0203 |
| Published: |
Institute of Mathematical Statistics
2023
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa59320 |
| first_indexed |
2022-02-17T15:54:29Z |
|---|---|
| last_indexed |
2024-11-14T12:15:17Z |
| id |
cronfa59320 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-06-01T13:30:28.6058589</datestamp><bib-version>v2</bib-version><id>59320</id><entry>2022-02-08</entry><title>Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-02-08</date><abstract/><type>Journal Article</type><journal>Annales de l'Institut Henri Poincaré, Probabilités et Statistiques</journal><volume>59</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Institute of Mathematical Statistics</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0246-0203</issnPrint><issnElectronic/><keywords>diffusion process , Eigenvalues , empirical measure , Riemannian manifold , Wasserstein distance</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-01</publishedDate><doi>10.1214/22-aihp1251</doi><url>http://dx.doi.org/10.1214/22-aihp1251</url><notes>Pre-print before peer review in Annales de l'Institut Henri Poincare available via arXiv. https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/annales-de-linstitut-henri-poincare-accepted-papers/</notes><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-01T13:30:28.6058589</lastEdited><Created>2022-02-08T04:09:31.2397559</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Jie-Xiang</firstname><surname>Zhu</surname><order>2</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2023-06-01T13:30:28.6058589 v2 59320 2022-02-08 Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2022-02-08 Journal Article Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 59 1 Institute of Mathematical Statistics 0246-0203 diffusion process , Eigenvalues , empirical measure , Riemannian manifold , Wasserstein distance 1 2 2023 2023-02-01 10.1214/22-aihp1251 http://dx.doi.org/10.1214/22-aihp1251 Pre-print before peer review in Annales de l'Institut Henri Poincare available via arXiv. https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/annales-de-linstitut-henri-poincare-accepted-papers/ COLLEGE NANME COLLEGE CODE Swansea University 2023-06-01T13:30:28.6058589 2022-02-08T04:09:31.2397559 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1 Jie-Xiang Zhu 2 |
| title |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds |
| spellingShingle |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds Feng-yu Wang |
| title_short |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds |
| title_full |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds |
| title_fullStr |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds |
| title_full_unstemmed |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds |
| title_sort |
Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds |
| author_id_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de |
| author_id_fullname_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang |
| author |
Feng-yu Wang |
| author2 |
Feng-yu Wang Jie-Xiang Zhu |
| format |
Journal article |
| container_title |
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques |
| container_volume |
59 |
| container_issue |
1 |
| publishDate |
2023 |
| institution |
Swansea University |
| issn |
0246-0203 |
| doi_str_mv |
10.1214/22-aihp1251 |
| publisher |
Institute of Mathematical Statistics |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| url |
http://dx.doi.org/10.1214/22-aihp1251 |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2023-02-01T05:01:41Z |
| _version_ |
1851096197906825216 |
| score |
11.089407 |

