No Cover Image

Journal article 669 views

Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds

Feng-yu Wang Orcid Logo, Jie-Xiang Zhu

Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume: 59, Issue: 1

Swansea University Author: Feng-yu Wang Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1214/22-aihp1251

Published in: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
ISSN: 0246-0203
Published: Institute of Mathematical Statistics 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59320
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-02-17T15:54:29Z
last_indexed 2023-01-13T16:26:40Z
id cronfa59320
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>59320</id><entry>2022-02-08</entry><title>Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><ORCID>0000-0003-0950-1672</ORCID><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-02-08</date><deptcode>SMA</deptcode><abstract/><type>Journal Article</type><journal>Annales de l'Institut Henri Poincaré, Probabilités et Statistiques</journal><volume>59</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Institute of Mathematical Statistics</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0246-0203</issnPrint><issnElectronic/><keywords>diffusion process , Eigenvalues , empirical measure , Riemannian manifold , Wasserstein distance</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-01</publishedDate><doi>10.1214/22-aihp1251</doi><url>http://dx.doi.org/10.1214/22-aihp1251</url><notes>Pre-print before peer review in Annales de l'Institut Henri Poincare available via arXiv. https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/annales-de-linstitut-henri-poincare-accepted-papers/</notes><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-01T13:30:28.6058589</lastEdited><Created>2022-02-08T04:09:31.2397559</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><orcid>0000-0003-0950-1672</orcid><order>1</order></author><author><firstname>Jie-Xiang</firstname><surname>Zhu</surname><order>2</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling v2 59320 2022-02-08 Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds 6734caa6d9a388bd3bd8eb0a1131d0de 0000-0003-0950-1672 Feng-yu Wang Feng-yu Wang true false 2022-02-08 SMA Journal Article Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 59 1 Institute of Mathematical Statistics 0246-0203 diffusion process , Eigenvalues , empirical measure , Riemannian manifold , Wasserstein distance 1 2 2023 2023-02-01 10.1214/22-aihp1251 http://dx.doi.org/10.1214/22-aihp1251 Pre-print before peer review in Annales de l'Institut Henri Poincare available via arXiv. https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/annales-de-linstitut-henri-poincare-accepted-papers/ COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2023-06-01T13:30:28.6058589 2022-02-08T04:09:31.2397559 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 0000-0003-0950-1672 1 Jie-Xiang Zhu 2
title Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
spellingShingle Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
Feng-yu Wang
title_short Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
title_full Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
title_fullStr Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
title_full_unstemmed Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
title_sort Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Feng-yu Wang
Jie-Xiang Zhu
format Journal article
container_title Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
container_volume 59
container_issue 1
publishDate 2023
institution Swansea University
issn 0246-0203
doi_str_mv 10.1214/22-aihp1251
publisher Institute of Mathematical Statistics
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1214/22-aihp1251
document_store_str 0
active_str 0
published_date 2023-02-01T13:30:27Z
_version_ 1767503432264974336
score 11.037144