No Cover Image

Journal article 861 views 75 downloads

Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study

Harrison Lee, Katherine Stewart, Declan Hughes, Jérémy Barbé, Adam Pockett, Rachel C. Kilbride, Keith C. Heasman, Zhengfei Wei, Trystan Watson Orcid Logo, Matt Carnie Orcid Logo, Ji-Seon Kim, Wing Chung Tsoi Orcid Logo

Solar RRL, Volume: 6, Issue: 6, Start page: 2101037

Swansea University Authors: Harrison Lee, Adam Pockett, Zhengfei Wei, Trystan Watson Orcid Logo, Matt Carnie Orcid Logo, Wing Chung Tsoi Orcid Logo

  • 59314.pdf

    PDF | Version of Record

    © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License

    Download (2.01MB)

Check full text

DOI (Published version): 10.1002/solr.202101037

Abstract

Recent developments of solution-processed bulk-heterojunction organic photovoltaic (OPV) cells have demonstrated power conversion efficiencies (PCEs) as high as 18% for single-junction devices. Such a high PCE in addition to its desirable lightweight property and high mechanical flexibility can real...

Full description

Published in: Solar RRL
ISSN: 2367-198X 2367-198X
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59314
first_indexed 2022-02-07T15:01:26Z
last_indexed 2023-01-11T14:40:30Z
id cronfa59314
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-31T17:00:11.1051181</datestamp><bib-version>v2</bib-version><id>59314</id><entry>2022-02-07</entry><title>Proton Radiation Hardness of Organic Photovoltaics: An In&#x2010;Depth Study</title><swanseaauthors><author><sid>0ef65494d0dda7f6aea5ead8bb6ce466</sid><ORCID/><firstname>Harrison</firstname><surname>Lee</surname><name>Harrison Lee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>de06433fccc0514dcf45aa9d1fc5c60f</sid><firstname>Adam</firstname><surname>Pockett</surname><name>Adam Pockett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e4ae52ae9b63b7b6da834c460ee3bb2d</sid><ORCID/><firstname>Zhengfei</firstname><surname>Wei</surname><name>Zhengfei Wei</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-02-07</date><deptcode>EAAS</deptcode><abstract>Recent developments of solution-processed bulk-heterojunction organic photovoltaic (OPV) cells have demonstrated power conversion efficiencies (PCEs) as high as 18% for single-junction devices. Such a high PCE in addition to its desirable lightweight property and high mechanical flexibility can realize high specific power and small stowed volume, which are key considerations when choosing PV for space missions. To take one important step forward, their resilience to ionizing radiation should be well studied. Herein, the effect of proton irradiation at various fluences on the performance of benchmark OPV cells is explored under AM0 illumination. The remaining device performance is found to decrease with increasing proton fluence, which correlates to changes in electrical and chemical properties of the active layer. By redissolving the devices, the solubility of the active layer is found to decrease with increasing proton fluence, suggesting that the active materials are likely cross-linked. Additionally, Raman studies reveal conformational changes of the polymer leading to a higher degree of energetic disorder. Despite a drop in performance, the retaining percentage of the performance is indeed higher than the current market-dominating space PV technology&#x2014;III&#x2013;V semiconductor-based PV, demonstrating a high potential of the OPV cell as a candidate for space applications.</abstract><type>Journal Article</type><journal>Solar RRL</journal><volume>6</volume><journalNumber>6</journalNumber><paginationStart>2101037</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2367-198X</issnPrint><issnElectronic>2367-198X</issnElectronic><keywords>organic photovoltaics; proton bombardment; space</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-01</publishedDate><doi>10.1002/solr.202101037</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Airbus Endeavr Wales; Engineering and Physical Sciences Research Council. Grant Numbers: EP/N020863/1, EP/L016702/1, EP/T028513/1; Innovate UK. Grant Number: 920036; European Regional Development Fund. Grant Number: c80892 ; Ministry of Science, ICT &amp; Future Planning. Grant Number: NRF-2017K1A1A2 013153 ; Welsh European Funding Office (SPARC II)</funders><projectreference/><lastEdited>2022-10-31T17:00:11.1051181</lastEdited><Created>2022-02-07T14:57:07.8630419</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Harrison</firstname><surname>Lee</surname><orcid/><order>1</order></author><author><firstname>Katherine</firstname><surname>Stewart</surname><order>2</order></author><author><firstname>Declan</firstname><surname>Hughes</surname><order>3</order></author><author><firstname>J&#xE9;r&#xE9;my</firstname><surname>Barb&#xE9;</surname><order>4</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>5</order></author><author><firstname>Rachel C.</firstname><surname>Kilbride</surname><order>6</order></author><author><firstname>Keith C.</firstname><surname>Heasman</surname><order>7</order></author><author><firstname>Zhengfei</firstname><surname>Wei</surname><orcid/><order>8</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>9</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>10</order></author><author><firstname>Ji-Seon</firstname><surname>Kim</surname><order>11</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>12</order></author></authors><documents><document><filename>59314__22546__7d944fdfd76e4095901407437d870c70.pdf</filename><originalFilename>59314.pdf</originalFilename><uploaded>2022-03-08T13:42:49.9655836</uploaded><type>Output</type><contentLength>2102863</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-31T17:00:11.1051181 v2 59314 2022-02-07 Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study 0ef65494d0dda7f6aea5ead8bb6ce466 Harrison Lee Harrison Lee true false de06433fccc0514dcf45aa9d1fc5c60f Adam Pockett Adam Pockett true false e4ae52ae9b63b7b6da834c460ee3bb2d Zhengfei Wei Zhengfei Wei true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2022-02-07 EAAS Recent developments of solution-processed bulk-heterojunction organic photovoltaic (OPV) cells have demonstrated power conversion efficiencies (PCEs) as high as 18% for single-junction devices. Such a high PCE in addition to its desirable lightweight property and high mechanical flexibility can realize high specific power and small stowed volume, which are key considerations when choosing PV for space missions. To take one important step forward, their resilience to ionizing radiation should be well studied. Herein, the effect of proton irradiation at various fluences on the performance of benchmark OPV cells is explored under AM0 illumination. The remaining device performance is found to decrease with increasing proton fluence, which correlates to changes in electrical and chemical properties of the active layer. By redissolving the devices, the solubility of the active layer is found to decrease with increasing proton fluence, suggesting that the active materials are likely cross-linked. Additionally, Raman studies reveal conformational changes of the polymer leading to a higher degree of energetic disorder. Despite a drop in performance, the retaining percentage of the performance is indeed higher than the current market-dominating space PV technology—III–V semiconductor-based PV, demonstrating a high potential of the OPV cell as a candidate for space applications. Journal Article Solar RRL 6 6 2101037 Wiley 2367-198X 2367-198X organic photovoltaics; proton bombardment; space 1 3 2022 2022-03-01 10.1002/solr.202101037 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University SU Library paid the OA fee (TA Institutional Deal) Airbus Endeavr Wales; Engineering and Physical Sciences Research Council. Grant Numbers: EP/N020863/1, EP/L016702/1, EP/T028513/1; Innovate UK. Grant Number: 920036; European Regional Development Fund. Grant Number: c80892 ; Ministry of Science, ICT & Future Planning. Grant Number: NRF-2017K1A1A2 013153 ; Welsh European Funding Office (SPARC II) 2022-10-31T17:00:11.1051181 2022-02-07T14:57:07.8630419 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Harrison Lee 1 Katherine Stewart 2 Declan Hughes 3 Jérémy Barbé 4 Adam Pockett 5 Rachel C. Kilbride 6 Keith C. Heasman 7 Zhengfei Wei 8 Trystan Watson 0000-0002-8015-1436 9 Matt Carnie 0000-0002-4232-1967 10 Ji-Seon Kim 11 Wing Chung Tsoi 0000-0003-3836-5139 12 59314__22546__7d944fdfd76e4095901407437d870c70.pdf 59314.pdf 2022-03-08T13:42:49.9655836 Output 2102863 application/pdf Version of Record true © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/
title Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
spellingShingle Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
Harrison Lee
Adam Pockett
Zhengfei Wei
Trystan Watson
Matt Carnie
Wing Chung Tsoi
title_short Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
title_full Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
title_fullStr Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
title_full_unstemmed Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
title_sort Proton Radiation Hardness of Organic Photovoltaics: An In‐Depth Study
author_id_str_mv 0ef65494d0dda7f6aea5ead8bb6ce466
de06433fccc0514dcf45aa9d1fc5c60f
e4ae52ae9b63b7b6da834c460ee3bb2d
a210327b52472cfe8df9b8108d661457
73b367694366a646b90bb15db32bb8c0
7e5f541df6635a9a8e1a579ff2de5d56
author_id_fullname_str_mv 0ef65494d0dda7f6aea5ead8bb6ce466_***_Harrison Lee
de06433fccc0514dcf45aa9d1fc5c60f_***_Adam Pockett
e4ae52ae9b63b7b6da834c460ee3bb2d_***_Zhengfei Wei
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi
author Harrison Lee
Adam Pockett
Zhengfei Wei
Trystan Watson
Matt Carnie
Wing Chung Tsoi
author2 Harrison Lee
Katherine Stewart
Declan Hughes
Jérémy Barbé
Adam Pockett
Rachel C. Kilbride
Keith C. Heasman
Zhengfei Wei
Trystan Watson
Matt Carnie
Ji-Seon Kim
Wing Chung Tsoi
format Journal article
container_title Solar RRL
container_volume 6
container_issue 6
container_start_page 2101037
publishDate 2022
institution Swansea University
issn 2367-198X
2367-198X
doi_str_mv 10.1002/solr.202101037
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Recent developments of solution-processed bulk-heterojunction organic photovoltaic (OPV) cells have demonstrated power conversion efficiencies (PCEs) as high as 18% for single-junction devices. Such a high PCE in addition to its desirable lightweight property and high mechanical flexibility can realize high specific power and small stowed volume, which are key considerations when choosing PV for space missions. To take one important step forward, their resilience to ionizing radiation should be well studied. Herein, the effect of proton irradiation at various fluences on the performance of benchmark OPV cells is explored under AM0 illumination. The remaining device performance is found to decrease with increasing proton fluence, which correlates to changes in electrical and chemical properties of the active layer. By redissolving the devices, the solubility of the active layer is found to decrease with increasing proton fluence, suggesting that the active materials are likely cross-linked. Additionally, Raman studies reveal conformational changes of the polymer leading to a higher degree of energetic disorder. Despite a drop in performance, the retaining percentage of the performance is indeed higher than the current market-dominating space PV technology—III–V semiconductor-based PV, demonstrating a high potential of the OPV cell as a candidate for space applications.
published_date 2022-03-01T20:09:30Z
_version_ 1821346911629606912
score 11.04748