No Cover Image

Journal article 631 views 157 downloads

Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite

Tian Du Orcid Logo, Thomas J. Macdonald Orcid Logo, Ruo Xi Yang Orcid Logo, Meng Li Orcid Logo, Zhongyao Jiang, Lokeshwari Mohan, Weidong Xu Orcid Logo, Zhenhuang Su, Xingyu Gao Orcid Logo, Richard Whiteley, Chieh‐Ting Lin Orcid Logo, Ganghong Min Orcid Logo, Saif A. Haque Orcid Logo, James Durrant Orcid Logo, Kristin A. Persson Orcid Logo, Martyn A. McLachlan, Joe Briscoe Orcid Logo

Advanced Materials, Volume: 34, Issue: 9, Start page: 2107850

Swansea University Author: James Durrant Orcid Logo

  • adma.202107850.pdf

    PDF | Version of Record

    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

    Download (7.35MB)

Check full text

DOI (Published version): 10.1002/adma.202107850

Abstract

Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing a...

Full description

Published in: Advanced Materials
ISSN: 0935-9648 1521-4095
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59285
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-01-31T16:48:36Z
last_indexed 2022-04-09T03:24:38Z
id cronfa59285
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-04-08T17:15:34.0669777</datestamp><bib-version>v2</bib-version><id>59285</id><entry>2022-01-31</entry><title>Additive-Free, Low-Temperature Crystallization of Stable &#x3B1;-FAPbI3 Perovskite</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-31</date><deptcode>MTLS</deptcode><abstract>Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium&#x2010;based perovskites. Crystallization of phase&#x2010;pure &#x3B1;&#x2010;FAPbI3 conventionally requires high&#x2010;temperature thermal annealing at 150 &#xB0;C whilst the obtained &#x3B1;&#x2010;FAPbI3 is metastable at room temperature. Here, aerosol&#x2010;assisted crystallization (AAC) is reported, which converts yellow &#x3B4;&#x2010;FAPbI3 into black &#x3B1;&#x2010;FAPbI3 at only 100 &#xB0;C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained &#x3B1;&#x2010;FAPbI3 exhibits remarkably enhanced stability compared to the 150 &#xB0;C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X&#x2010;ray diffraction, X&#x2010;ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post&#x2010;crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase&#x2010;stable &#x3B1;&#x2010;FAPbI3. This overcomes the strain&#x2010;induced lattice expansion that is known to cause the metastability of &#x3B1;&#x2010;FAPbI3. Accordingly, pure FAPbI3 p&#x2013;i&#x2013;n solar cells are reported, facilitated by the low&#x2010;temperature (&#x2264;100 &#xB0;C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 &#xB0;C annealed films.</abstract><type>Journal Article</type><journal>Advanced Materials</journal><volume>34</volume><journalNumber>9</journalNumber><paginationStart>2107850</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0935-9648</issnPrint><issnElectronic>1521-4095</issnElectronic><keywords>additive-free; aerosol-assisted crystallization; formamidinium lead triiodide; stability; strain</keywords><publishedDay>3</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-03</publishedDate><doi>10.1002/adma.202107850</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC Plastic Electronics. Grant Number: EP/L016702/1; QMUL-EPSRC Impact Accelerator Account; Stephen and Anna Hui Scholarship; Imperial College London; U.S. Department of Energy; Office of Science; Basic Energy Sciences; Materials Sciences and Engineering Division. Grant Number: DE-AC02-05-CH11231; Global Research Laboratory; National Research Foundation of Korea. Grant Number: NRF-2017K1A1A2013153</funders><lastEdited>2022-04-08T17:15:34.0669777</lastEdited><Created>2022-01-31T16:46:04.5734467</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Tian</firstname><surname>Du</surname><orcid>0000-0002-0566-1145</orcid><order>1</order></author><author><firstname>Thomas J.</firstname><surname>Macdonald</surname><orcid>0000-0002-7520-6893</orcid><order>2</order></author><author><firstname>Ruo Xi</firstname><surname>Yang</surname><orcid>0000-0001-8225-5856</orcid><order>3</order></author><author><firstname>Meng</firstname><surname>Li</surname><orcid>0000-0003-0360-7791</orcid><order>4</order></author><author><firstname>Zhongyao</firstname><surname>Jiang</surname><order>5</order></author><author><firstname>Lokeshwari</firstname><surname>Mohan</surname><order>6</order></author><author><firstname>Weidong</firstname><surname>Xu</surname><orcid>0000-0002-3934-8579</orcid><order>7</order></author><author><firstname>Zhenhuang</firstname><surname>Su</surname><order>8</order></author><author><firstname>Xingyu</firstname><surname>Gao</surname><orcid>0000-0003-1477-0092</orcid><order>9</order></author><author><firstname>Richard</firstname><surname>Whiteley</surname><order>10</order></author><author><firstname>Chieh&#x2010;Ting</firstname><surname>Lin</surname><orcid>0000-0002-9591-0888</orcid><order>11</order></author><author><firstname>Ganghong</firstname><surname>Min</surname><orcid>0000-0001-8322-7304</orcid><order>12</order></author><author><firstname>Saif A.</firstname><surname>Haque</surname><orcid>0000-0001-5483-3321</orcid><order>13</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>14</order></author><author><firstname>Kristin A.</firstname><surname>Persson</surname><orcid>0000-0003-2495-5509</orcid><order>15</order></author><author><firstname>Martyn A.</firstname><surname>McLachlan</surname><order>16</order></author><author><firstname>Joe</firstname><surname>Briscoe</surname><orcid>0000-0002-5925-860x</orcid><order>17</order></author></authors><documents><document><filename>59285__22261__63d870fd4f424bfd9d76ed2511f7ffcf.pdf</filename><originalFilename>adma.202107850.pdf</originalFilename><uploaded>2022-01-31T16:46:04.5567882</uploaded><type>Output</type><contentLength>7712115</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-04-08T17:15:34.0669777 v2 59285 2022-01-31 Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2022-01-31 MTLS Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing at 150 °C whilst the obtained α‐FAPbI3 is metastable at room temperature. Here, aerosol‐assisted crystallization (AAC) is reported, which converts yellow δ‐FAPbI3 into black α‐FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α‐FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X‐ray diffraction, X‐ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post‐crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase‐stable α‐FAPbI3. This overcomes the strain‐induced lattice expansion that is known to cause the metastability of α‐FAPbI3. Accordingly, pure FAPbI3 p–i–n solar cells are reported, facilitated by the low‐temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films. Journal Article Advanced Materials 34 9 2107850 Wiley 0935-9648 1521-4095 additive-free; aerosol-assisted crystallization; formamidinium lead triiodide; stability; strain 3 3 2022 2022-03-03 10.1002/adma.202107850 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University EPSRC Plastic Electronics. Grant Number: EP/L016702/1; QMUL-EPSRC Impact Accelerator Account; Stephen and Anna Hui Scholarship; Imperial College London; U.S. Department of Energy; Office of Science; Basic Energy Sciences; Materials Sciences and Engineering Division. Grant Number: DE-AC02-05-CH11231; Global Research Laboratory; National Research Foundation of Korea. Grant Number: NRF-2017K1A1A2013153 2022-04-08T17:15:34.0669777 2022-01-31T16:46:04.5734467 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Tian Du 0000-0002-0566-1145 1 Thomas J. Macdonald 0000-0002-7520-6893 2 Ruo Xi Yang 0000-0001-8225-5856 3 Meng Li 0000-0003-0360-7791 4 Zhongyao Jiang 5 Lokeshwari Mohan 6 Weidong Xu 0000-0002-3934-8579 7 Zhenhuang Su 8 Xingyu Gao 0000-0003-1477-0092 9 Richard Whiteley 10 Chieh‐Ting Lin 0000-0002-9591-0888 11 Ganghong Min 0000-0001-8322-7304 12 Saif A. Haque 0000-0001-5483-3321 13 James Durrant 0000-0001-8353-7345 14 Kristin A. Persson 0000-0003-2495-5509 15 Martyn A. McLachlan 16 Joe Briscoe 0000-0002-5925-860x 17 59285__22261__63d870fd4f424bfd9d76ed2511f7ffcf.pdf adma.202107850.pdf 2022-01-31T16:46:04.5567882 Output 7712115 application/pdf Version of Record true This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. true eng http://creativecommons.org/licenses/by-nc/4.0/
title Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
spellingShingle Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
James Durrant
title_short Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
title_full Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
title_fullStr Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
title_full_unstemmed Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
title_sort Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite
author_id_str_mv f3dd64bc260e5c07adfa916c27dbd58a
author_id_fullname_str_mv f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
author James Durrant
author2 Tian Du
Thomas J. Macdonald
Ruo Xi Yang
Meng Li
Zhongyao Jiang
Lokeshwari Mohan
Weidong Xu
Zhenhuang Su
Xingyu Gao
Richard Whiteley
Chieh‐Ting Lin
Ganghong Min
Saif A. Haque
James Durrant
Kristin A. Persson
Martyn A. McLachlan
Joe Briscoe
format Journal article
container_title Advanced Materials
container_volume 34
container_issue 9
container_start_page 2107850
publishDate 2022
institution Swansea University
issn 0935-9648
1521-4095
doi_str_mv 10.1002/adma.202107850
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Formamidinium lead triiodide (FAPbI3) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium‐based perovskites. Crystallization of phase‐pure α‐FAPbI3 conventionally requires high‐temperature thermal annealing at 150 °C whilst the obtained α‐FAPbI3 is metastable at room temperature. Here, aerosol‐assisted crystallization (AAC) is reported, which converts yellow δ‐FAPbI3 into black α‐FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α‐FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X‐ray diffraction, X‐ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post‐crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase‐stable α‐FAPbI3. This overcomes the strain‐induced lattice expansion that is known to cause the metastability of α‐FAPbI3. Accordingly, pure FAPbI3 p–i–n solar cells are reported, facilitated by the low‐temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films.
published_date 2022-03-03T04:16:28Z
_version_ 1763754103126622208
score 11.014067