No Cover Image

Journal article 672 views 105 downloads

Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments

Andrew Claypole, James Claypole, Neil Bezodis Orcid Logo, Liam Kilduff Orcid Logo, David Gethin Orcid Logo, Tim Claypole Orcid Logo

Materials, Volume: 15, Issue: 2, Start page: 573

Swansea University Authors: Andrew Claypole, James Claypole, Neil Bezodis Orcid Logo, Liam Kilduff Orcid Logo, David Gethin Orcid Logo, Tim Claypole Orcid Logo

  • 59178.pdf

    PDF | Version of Record

    © 2022 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Download (4.26MB)

Check full text

DOI (Published version): 10.3390/ma15020573

Abstract

The ability to maintain body temperature has been shown to bring about improvementsin sporting performance. However, current solutions are limited with regards to flexibility, heatinguniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated whichis robust to bending,...

Full description

Published in: Materials
ISSN: 1996-1944
Published: MDPI AG 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59178
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-01-14T14:54:47Z
last_indexed 2023-01-11T14:40:16Z
id cronfa59178
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-31T15:45:54.4917725</datestamp><bib-version>v2</bib-version><id>59178</id><entry>2022-01-14</entry><title>Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments</title><swanseaauthors><author><sid>f67f965e32151fcd26f52f9db57d7baa</sid><firstname>Andrew</firstname><surname>Claypole</surname><name>Andrew Claypole</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0e33dfb4c8d099d6648af8812a472a05</sid><ORCID/><firstname>James</firstname><surname>Claypole</surname><name>James Claypole</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>534588568c1936e94e1ed8527b8c991b</sid><ORCID>0000-0003-2229-3310</ORCID><firstname>Neil</firstname><surname>Bezodis</surname><name>Neil Bezodis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>972ed9a1dda7a0de20581a0f8350be98</sid><ORCID>0000-0001-9449-2293</ORCID><firstname>Liam</firstname><surname>Kilduff</surname><name>Liam Kilduff</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>20b93675a5457203ae87ebc32bd6d155</sid><ORCID>0000-0002-7142-8253</ORCID><firstname>David</firstname><surname>Gethin</surname><name>David Gethin</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7735385522f1e68a8775b4f709e91d55</sid><ORCID>0000-0003-1393-9634</ORCID><firstname>Tim</firstname><surname>Claypole</surname><name>Tim Claypole</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-14</date><deptcode>MECH</deptcode><abstract>The ability to maintain body temperature has been shown to bring about improvementsin sporting performance. However, current solutions are limited with regards to flexibility, heatinguniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated whichis robust to bending, folding, tensile extensions of up to 20% and machine washing. This combinationof ink and substrate enables the heated garments to safely flex without impeding the wearer. It iscapable of producing uniform heating over a 15 &#xD7; 4 cm area using a conductive ink based on a blendof Graphite Nanoplatelets and Carbon Black. This can be attributed to the low roughness of theconductive carbon coating, the uniform distribution and good interconnection of the carbon particles.The heaters have a low thermal inertia, producing a rapid temperature response at low voltages,reaching equilibrium temperatures within 120 s of being switched on. The heaters reached the 40 &#x25E6;Crequired for wearable heating applications within 20 s at 12 Volts. Screen printing was demonstratedto be an effective method of controlling the printed layer thickness with good interlayer adhesionand contact for multiple printed layers. This can be used to regulate their electrical properties andhence adjust the heater performance.</abstract><type>Journal Article</type><journal>Materials</journal><volume>15</volume><journalNumber>2</journalNumber><paginationStart>573</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1996-1944</issnElectronic><keywords>Nanocarbon ink; printed heater; wearable; flexible; stretchable</keywords><publishedDay>13</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-01-13</publishedDate><doi>10.3390/ma15020573</doi><url/><notes/><college>COLLEGE NANME</college><department>Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MECH</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This research was funded by the Welsh Government SMART Expertise program funded by the European Regional Development Fund. Andrew Claypole also wishes to acknowledge the financial support of Engineering and Physical Sciences Research Council (EP/l015099/1), M2A Doctoral Training Fund provided by European Social Fund and Haydale Graphene Industries.</funders><projectreference/><lastEdited>2022-10-31T15:45:54.4917725</lastEdited><Created>2022-01-14T14:51:36.2520807</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Andrew</firstname><surname>Claypole</surname><order>1</order></author><author><firstname>James</firstname><surname>Claypole</surname><orcid/><order>2</order></author><author><firstname>Neil</firstname><surname>Bezodis</surname><orcid>0000-0003-2229-3310</orcid><order>3</order></author><author><firstname>Liam</firstname><surname>Kilduff</surname><orcid>0000-0001-9449-2293</orcid><order>4</order></author><author><firstname>David</firstname><surname>Gethin</surname><orcid>0000-0002-7142-8253</orcid><order>5</order></author><author><firstname>Tim</firstname><surname>Claypole</surname><orcid>0000-0003-1393-9634</orcid><order>6</order></author></authors><documents><document><filename>59178__22262__e2f369c93d1f4b698064468b329e91a4.pdf</filename><originalFilename>59178.pdf</originalFilename><uploaded>2022-01-31T17:05:14.1668845</uploaded><type>Output</type><contentLength>4463976</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-31T15:45:54.4917725 v2 59178 2022-01-14 Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments f67f965e32151fcd26f52f9db57d7baa Andrew Claypole Andrew Claypole true false 0e33dfb4c8d099d6648af8812a472a05 James Claypole James Claypole true false 534588568c1936e94e1ed8527b8c991b 0000-0003-2229-3310 Neil Bezodis Neil Bezodis true false 972ed9a1dda7a0de20581a0f8350be98 0000-0001-9449-2293 Liam Kilduff Liam Kilduff true false 20b93675a5457203ae87ebc32bd6d155 0000-0002-7142-8253 David Gethin David Gethin true false 7735385522f1e68a8775b4f709e91d55 0000-0003-1393-9634 Tim Claypole Tim Claypole true false 2022-01-14 MECH The ability to maintain body temperature has been shown to bring about improvementsin sporting performance. However, current solutions are limited with regards to flexibility, heatinguniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated whichis robust to bending, folding, tensile extensions of up to 20% and machine washing. This combinationof ink and substrate enables the heated garments to safely flex without impeding the wearer. It iscapable of producing uniform heating over a 15 × 4 cm area using a conductive ink based on a blendof Graphite Nanoplatelets and Carbon Black. This can be attributed to the low roughness of theconductive carbon coating, the uniform distribution and good interconnection of the carbon particles.The heaters have a low thermal inertia, producing a rapid temperature response at low voltages,reaching equilibrium temperatures within 120 s of being switched on. The heaters reached the 40 ◦Crequired for wearable heating applications within 20 s at 12 Volts. Screen printing was demonstratedto be an effective method of controlling the printed layer thickness with good interlayer adhesionand contact for multiple printed layers. This can be used to regulate their electrical properties andhence adjust the heater performance. Journal Article Materials 15 2 573 MDPI AG 1996-1944 Nanocarbon ink; printed heater; wearable; flexible; stretchable 13 1 2022 2022-01-13 10.3390/ma15020573 COLLEGE NANME Mechanical Engineering COLLEGE CODE MECH Swansea University This research was funded by the Welsh Government SMART Expertise program funded by the European Regional Development Fund. Andrew Claypole also wishes to acknowledge the financial support of Engineering and Physical Sciences Research Council (EP/l015099/1), M2A Doctoral Training Fund provided by European Social Fund and Haydale Graphene Industries. 2022-10-31T15:45:54.4917725 2022-01-14T14:51:36.2520807 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Andrew Claypole 1 James Claypole 2 Neil Bezodis 0000-0003-2229-3310 3 Liam Kilduff 0000-0001-9449-2293 4 David Gethin 0000-0002-7142-8253 5 Tim Claypole 0000-0003-1393-9634 6 59178__22262__e2f369c93d1f4b698064468b329e91a4.pdf 59178.pdf 2022-01-31T17:05:14.1668845 Output 4463976 application/pdf Version of Record true © 2022 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license true eng https://creativecommons.org/licenses/by/4.0/
title Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
spellingShingle Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
Andrew Claypole
James Claypole
Neil Bezodis
Liam Kilduff
David Gethin
Tim Claypole
title_short Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
title_full Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
title_fullStr Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
title_full_unstemmed Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
title_sort Printed Nanocarbon Heaters for Stretchable Sport and Leisure Garments
author_id_str_mv f67f965e32151fcd26f52f9db57d7baa
0e33dfb4c8d099d6648af8812a472a05
534588568c1936e94e1ed8527b8c991b
972ed9a1dda7a0de20581a0f8350be98
20b93675a5457203ae87ebc32bd6d155
7735385522f1e68a8775b4f709e91d55
author_id_fullname_str_mv f67f965e32151fcd26f52f9db57d7baa_***_Andrew Claypole
0e33dfb4c8d099d6648af8812a472a05_***_James Claypole
534588568c1936e94e1ed8527b8c991b_***_Neil Bezodis
972ed9a1dda7a0de20581a0f8350be98_***_Liam Kilduff
20b93675a5457203ae87ebc32bd6d155_***_David Gethin
7735385522f1e68a8775b4f709e91d55_***_Tim Claypole
author Andrew Claypole
James Claypole
Neil Bezodis
Liam Kilduff
David Gethin
Tim Claypole
author2 Andrew Claypole
James Claypole
Neil Bezodis
Liam Kilduff
David Gethin
Tim Claypole
format Journal article
container_title Materials
container_volume 15
container_issue 2
container_start_page 573
publishDate 2022
institution Swansea University
issn 1996-1944
doi_str_mv 10.3390/ma15020573
publisher MDPI AG
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering
document_store_str 1
active_str 0
description The ability to maintain body temperature has been shown to bring about improvementsin sporting performance. However, current solutions are limited with regards to flexibility, heatinguniformity and robustness. An innovative screen-printed Nanocarbon heater is demonstrated whichis robust to bending, folding, tensile extensions of up to 20% and machine washing. This combinationof ink and substrate enables the heated garments to safely flex without impeding the wearer. It iscapable of producing uniform heating over a 15 × 4 cm area using a conductive ink based on a blendof Graphite Nanoplatelets and Carbon Black. This can be attributed to the low roughness of theconductive carbon coating, the uniform distribution and good interconnection of the carbon particles.The heaters have a low thermal inertia, producing a rapid temperature response at low voltages,reaching equilibrium temperatures within 120 s of being switched on. The heaters reached the 40 ◦Crequired for wearable heating applications within 20 s at 12 Volts. Screen printing was demonstratedto be an effective method of controlling the printed layer thickness with good interlayer adhesionand contact for multiple printed layers. This can be used to regulate their electrical properties andhence adjust the heater performance.
published_date 2022-01-13T04:16:17Z
_version_ 1763754091209555968
score 11.013148