Journal article 258 views 194 downloads
Cold atoms meet lattice gauge theory
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume: 380, Issue: 2216, Start page: 20210064
Swansea University Author: Simon Hands
-
PDF | Version of Record
2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited
Download (1.24MB)
DOI (Published version): 10.1098/rsta.2021.0064
Abstract
The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more ‘accessible’ and easier to manipulate for experimentalists, but this ‘...
Published in: | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
---|---|
ISSN: | 1364-503X 1471-2962 |
Published: |
The Royal Society
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59065 |
Abstract: |
The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more ‘accessible’ and easier to manipulate for experimentalists, but this ‘substitution’ also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or Z2 Bose–Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz–Hubbard ladder, or Gross–Neveu–Wilson and Wilson–Hubbard models. This article is not a general review of the rapidly growing field—it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue ‘Quantum technologies in particle physics’. |
---|---|
Keywords: |
quantum simulations, lattice gauge theory, ultracold quantum matter |
College: |
Faculty of Science and Engineering |
Funders: |
National Science Centre, Poland Grant: Symfonia Grant No. 2016/20/W/ST4/00314 ERC Grant: NOQIA Plan National FIDEUA Grant: PID2019-106901GB-I00/10.13039 / 501100011033 Marie Skłodowska-Curie Grant: STRETCH No 101029393 Plan Nacional Generación de Conocimiento Grant: PGC2018-095862-B-C22 State Research Agency AEI Grant: CEX2019-000910-S Caixa Foundation Grant: LCF/BQ/PR20/11770012 Fundació Privada Cellex National Science Centre (Poland) Grant: 2017/25/Z/ST2/03029 Generalitat de Catalunya Grant: AGAUR Grant No. 2017 SGR 1341 Grant: CERCA program Grant: QuantumCAT U16-011424 Grant: co-funded by ERDF Operational Program of Catalonia Identifier: Id http://dx.doi.org/10.13039/501100002809 EU Horizon 2020 FET-OPEN OPTOLogic Grant: 899794 Ramón y Cajal Grant: RYC-2016-20594 QUANTERA MAQS Grant: PCI2019-111828-2 / 10.13039/501100011033 State Agency for Research of the Spanish Ministry of Science and Innovation Grant: CEX2019-000918-M Fundació Mir-Puig STFC Consolidated Grant Grant: ST/T000813/1 |
Issue: |
2216 |
Start Page: |
20210064 |