Journal article 623 views 102 downloads
Predicting Fluid Intelligence via Naturalistic Functional Connectivity Using Weighted Ensemble Model and Network Analysis
NeuroSci, Volume: 2, Issue: 4, Pages: 427 - 442
Swansea University Author: Scott Yang
-
PDF | Version of Record
© 2021 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Download (2.48MB)
DOI (Published version): 10.3390/neurosci2040032
Abstract
Objectives: Functional connectivity triggered by naturalistic stimuli (e.g., movie clips), coupled with machine learning techniques provide great insight in exploring brain functions such as fluid intelligence. However, functional connectivity is multi-layered while traditional machine learning is b...
Published in: | NeuroSci |
---|---|
ISSN: | 2673-4087 |
Published: |
MDPI AG
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59033 |
Abstract: |
Objectives: Functional connectivity triggered by naturalistic stimuli (e.g., movie clips), coupled with machine learning techniques provide great insight in exploring brain functions such as fluid intelligence. However, functional connectivity is multi-layered while traditional machine learning is based on individual model, which is not only limited in performance, but also fails to extract multi-dimensional and multi-layered information from the brain network. Methods: In this study, inspired by multi-layer brain network structure, we propose a new method, namely weighted ensemble model and network analysis, which combines machine learning and graph theory for improved fluid intelligence prediction. Firstly, functional connectivity analysis and graphical theory were jointly employed. The functional connectivity and graphical indices computed using the preprocessed fMRI data were then all fed into an auto-encoder parallelly for automatic feature extraction to predict the fluid intelligence. In order to improve the performance, tree regression and ridge regression models were stacked and fused automatically with weighted values. Finally, layers of auto-encoder were visualized to better illustrate the connectome patterns, followed by the evaluation of the performance to justify the mechanism of brain functions. Results: Our proposed method achieved the best performance with a 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient; this model outperformed other state-of-the-art methods. It is also worth noting that the optimization of the biological pattern extraction was automated though the auto-encoder algorithm. Conclusion: The proposed method outperforms the state-of-the-art reports, also is able to effectively capture the biological patterns of functional connectivity during a naturalistic movie state for potential clinical explorations. |
---|---|
Keywords: |
functional magnetic resonance imaging; functional connectivity; weighted ensemble model and network analysis; fluid intelligence |
College: |
Faculty of Science and Engineering |
Funders: |
China Scholarship Council and the National Social Science Foundation of China (BEA200115) |
Issue: |
4 |
Start Page: |
427 |
End Page: |
442 |