Journal article 778 views 118 downloads
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling
Cell, Volume: 184, Issue: 3, Pages: 655 - 674.e27
Swansea University Author: Laura Thomas
-
PDF | Version of Record
2021 The Authors. This is an open access article under the CC BY-NC-ND license
Download (13.44MB)
DOI (Published version): 10.1016/j.cell.2020.12.024
Abstract
Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (...
Published in: | Cell |
---|---|
ISSN: | 0092-8674 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58991 |
first_indexed |
2021-12-10T08:48:43Z |
---|---|
last_indexed |
2023-01-11T14:39:57Z |
id |
cronfa58991 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-25T16:35:41.7672522</datestamp><bib-version>v2</bib-version><id>58991</id><entry>2021-12-10</entry><title>G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling</title><swanseaauthors><author><sid>6f80a1638d852bd88d37afe3aeb2fb62</sid><ORCID>0000-0002-8621-5285</ORCID><firstname>Laura</firstname><surname>Thomas</surname><name>Laura Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-12-10</date><deptcode>MEDS</deptcode><abstract>Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.</abstract><type>Journal Article</type><journal>Cell</journal><volume>184</volume><journalNumber>3</journalNumber><paginationStart>655</paginationStart><paginationEnd>674.e27</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0092-8674</issnPrint><issnElectronic/><keywords>TSC complex; mTORC1; G3BP1; G3BP2; lysosome; stress granule; metabolism; cancer; neuronal function</keywords><publishedDay>4</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-02-04</publishedDate><doi>10.1016/j.cell.2020.12.024</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders/><projectreference/><lastEdited>2022-10-25T16:35:41.7672522</lastEdited><Created>2021-12-10T08:47:17.8475463</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Mirja Tamara</firstname><surname>Prentzell</surname><order>1</order></author><author><firstname>Ulrike</firstname><surname>Rehbein</surname><order>2</order></author><author><firstname>Marti Cadena</firstname><surname>Sandoval</surname><order>3</order></author><author><firstname>Ann-Sofie De</firstname><surname>Meulemeester</surname><order>4</order></author><author><firstname>Ralf</firstname><surname>Baumeister</surname><order>5</order></author><author><firstname>Laura</firstname><surname>Brohée</surname><order>6</order></author><author><firstname>Bianca</firstname><surname>Berdel</surname><order>7</order></author><author><firstname>Mathias</firstname><surname>Bockwoldt</surname><order>8</order></author><author><firstname>Bernadette</firstname><surname>Carroll</surname><order>9</order></author><author><firstname>Suvagata Roy</firstname><surname>Chowdhury</surname><order>10</order></author><author><firstname>Andreas von</firstname><surname>Deimling</surname><order>11</order></author><author><firstname>Constantinos</firstname><surname>Demetriades</surname><order>12</order></author><author><firstname>Gianluca</firstname><surname>Figlia</surname><order>13</order></author><author><firstname>Mariana Eca Guimaraes de</firstname><surname>Araujo</surname><order>14</order></author><author><firstname>Alexander M.</firstname><surname>Heberle</surname><order>15</order></author><author><firstname>Ines</firstname><surname>Heiland</surname><order>16</order></author><author><firstname>Birgit</firstname><surname>Holzwarth</surname><order>17</order></author><author><firstname>Lukas A.</firstname><surname>Huber</surname><order>18</order></author><author><firstname>Jacek</firstname><surname>Jaworski</surname><order>19</order></author><author><firstname>Magdalena</firstname><surname>Kedra</surname><order>20</order></author><author><firstname>Katharina</firstname><surname>Kern</surname><order>21</order></author><author><firstname>Andrii</firstname><surname>Kopach</surname><order>22</order></author><author><firstname>Viktor I.</firstname><surname>Korolchuk</surname><order>23</order></author><author><firstname>Ineke van 't</firstname><surname>Land-Kuper</surname><order>24</order></author><author><firstname>Matylda</firstname><surname>Macias</surname><order>25</order></author><author><firstname>Mark</firstname><surname>Nellist</surname><order>26</order></author><author><firstname>Wilhelm</firstname><surname>Palm</surname><order>27</order></author><author><firstname>Stefan</firstname><surname>Pusch</surname><order>28</order></author><author><firstname>Jose Miguel Ramos</firstname><surname>Pittol</surname><order>29</order></author><author><firstname>Michèle</firstname><surname>Reil</surname><order>30</order></author><author><firstname>Anja</firstname><surname>Reintjes</surname><order>31</order></author><author><firstname>Friederike</firstname><surname>Reuter</surname><order>32</order></author><author><firstname>Julian R.</firstname><surname>Sampson</surname><order>33</order></author><author><firstname>Chloë</firstname><surname>Scheldeman</surname><order>34</order></author><author><firstname>Aleksandra</firstname><surname>Siekierska</surname><order>35</order></author><author><firstname>Eduard</firstname><surname>Stefan</surname><order>36</order></author><author><firstname>Aurelio A.</firstname><surname>Teleman</surname><order>37</order></author><author><firstname>Laura</firstname><surname>Thomas</surname><orcid>0000-0002-8621-5285</orcid><order>38</order></author><author><firstname>Omar</firstname><surname>Torres-Quesada</surname><order>39</order></author><author><firstname>Saskia</firstname><surname>Trump</surname><order>40</order></author><author><firstname>Hannah D.</firstname><surname>West</surname><order>41</order></author><author><firstname>Peter de</firstname><surname>Witte</surname><order>42</order></author><author><firstname>Sandra</firstname><surname>Woltering</surname><order>43</order></author><author><firstname>Teodor E.</firstname><surname>Yordanov</surname><order>44</order></author><author><firstname>Justyna</firstname><surname>Zmorzynska</surname><order>45</order></author><author><firstname>Christiane A.</firstname><surname>Opitz</surname><order>46</order></author><author><firstname>Kathrin</firstname><surname>Thedieck</surname><order>47</order></author></authors><documents><document><filename>58991__21948__a47f6b11c00b47b58463b69efc6e4ff5.pdf</filename><originalFilename>58991.pdf</originalFilename><uploaded>2021-12-29T14:30:44.2367388</uploaded><type>Output</type><contentLength>14096670</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>2021 The Authors. This is an open access article under the CC BY-NC-ND license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-25T16:35:41.7672522 v2 58991 2021-12-10 G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling 6f80a1638d852bd88d37afe3aeb2fb62 0000-0002-8621-5285 Laura Thomas Laura Thomas true false 2021-12-10 MEDS Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling. Journal Article Cell 184 3 655 674.e27 Elsevier BV 0092-8674 TSC complex; mTORC1; G3BP1; G3BP2; lysosome; stress granule; metabolism; cancer; neuronal function 4 2 2021 2021-02-04 10.1016/j.cell.2020.12.024 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University Another institution paid the OA fee 2022-10-25T16:35:41.7672522 2021-12-10T08:47:17.8475463 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Mirja Tamara Prentzell 1 Ulrike Rehbein 2 Marti Cadena Sandoval 3 Ann-Sofie De Meulemeester 4 Ralf Baumeister 5 Laura Brohée 6 Bianca Berdel 7 Mathias Bockwoldt 8 Bernadette Carroll 9 Suvagata Roy Chowdhury 10 Andreas von Deimling 11 Constantinos Demetriades 12 Gianluca Figlia 13 Mariana Eca Guimaraes de Araujo 14 Alexander M. Heberle 15 Ines Heiland 16 Birgit Holzwarth 17 Lukas A. Huber 18 Jacek Jaworski 19 Magdalena Kedra 20 Katharina Kern 21 Andrii Kopach 22 Viktor I. Korolchuk 23 Ineke van 't Land-Kuper 24 Matylda Macias 25 Mark Nellist 26 Wilhelm Palm 27 Stefan Pusch 28 Jose Miguel Ramos Pittol 29 Michèle Reil 30 Anja Reintjes 31 Friederike Reuter 32 Julian R. Sampson 33 Chloë Scheldeman 34 Aleksandra Siekierska 35 Eduard Stefan 36 Aurelio A. Teleman 37 Laura Thomas 0000-0002-8621-5285 38 Omar Torres-Quesada 39 Saskia Trump 40 Hannah D. West 41 Peter de Witte 42 Sandra Woltering 43 Teodor E. Yordanov 44 Justyna Zmorzynska 45 Christiane A. Opitz 46 Kathrin Thedieck 47 58991__21948__a47f6b11c00b47b58463b69efc6e4ff5.pdf 58991.pdf 2021-12-29T14:30:44.2367388 Output 14096670 application/pdf Version of Record true 2021 The Authors. This is an open access article under the CC BY-NC-ND license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling |
spellingShingle |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling Laura Thomas |
title_short |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling |
title_full |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling |
title_fullStr |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling |
title_full_unstemmed |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling |
title_sort |
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling |
author_id_str_mv |
6f80a1638d852bd88d37afe3aeb2fb62 |
author_id_fullname_str_mv |
6f80a1638d852bd88d37afe3aeb2fb62_***_Laura Thomas |
author |
Laura Thomas |
author2 |
Mirja Tamara Prentzell Ulrike Rehbein Marti Cadena Sandoval Ann-Sofie De Meulemeester Ralf Baumeister Laura Brohée Bianca Berdel Mathias Bockwoldt Bernadette Carroll Suvagata Roy Chowdhury Andreas von Deimling Constantinos Demetriades Gianluca Figlia Mariana Eca Guimaraes de Araujo Alexander M. Heberle Ines Heiland Birgit Holzwarth Lukas A. Huber Jacek Jaworski Magdalena Kedra Katharina Kern Andrii Kopach Viktor I. Korolchuk Ineke van 't Land-Kuper Matylda Macias Mark Nellist Wilhelm Palm Stefan Pusch Jose Miguel Ramos Pittol Michèle Reil Anja Reintjes Friederike Reuter Julian R. Sampson Chloë Scheldeman Aleksandra Siekierska Eduard Stefan Aurelio A. Teleman Laura Thomas Omar Torres-Quesada Saskia Trump Hannah D. West Peter de Witte Sandra Woltering Teodor E. Yordanov Justyna Zmorzynska Christiane A. Opitz Kathrin Thedieck |
format |
Journal article |
container_title |
Cell |
container_volume |
184 |
container_issue |
3 |
container_start_page |
655 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0092-8674 |
doi_str_mv |
10.1016/j.cell.2020.12.024 |
publisher |
Elsevier BV |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
document_store_str |
1 |
active_str |
0 |
description |
Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling. |
published_date |
2021-02-04T08:08:07Z |
_version_ |
1821392123163836416 |
score |
11.04748 |