E-Thesis 597 views
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics / SIMONE PISANO
Swansea University Author: SIMONE PISANO
DOI (Published version): 10.23889/SUthesis.58791
Abstract
Treatment of ovarian cancer (OC) continues to present clinical challenges. It remains difficult to diagnose early stage disease, and because of this generally presents as advanced stage, with limited therapeutic options and often the development of resistance to chemotherapy. Furthermore, OC is cons...
Published: |
Swansea
2021
|
---|---|
Institution: | Swansea University |
Degree level: | Doctoral |
Degree name: | Ph.D |
Supervisor: | Gonzalez, Deyarina; Conlan, Steven ; Corradetti, Bruna |
URI: | https://cronfa.swan.ac.uk/Record/cronfa58791 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2021-11-25T14:51:58Z |
---|---|
last_indexed |
2021-11-26T04:17:00Z |
id |
cronfa58791 |
recordtype |
RisThesis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-11-25T15:06:30.5304198</datestamp><bib-version>v2</bib-version><id>58791</id><entry>2021-11-25</entry><title>Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics</title><swanseaauthors><author><sid>a121612db79215480a2adbc16e52e5ea</sid><firstname>SIMONE</firstname><surname>PISANO</surname><name>SIMONE PISANO</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-11-25</date><abstract>Treatment of ovarian cancer (OC) continues to present clinical challenges. It remains difficult to diagnose early stage disease, and because of this generally presents as advanced stage, with limited therapeutic options and often the development of resistance to chemotherapy. Furthermore, OC is considered as an immunologically “cold” tumour based on the poor response to immunotherapies. This lack of response to immunotherapy remains poorly understood, hence better models are needed in order to elucidate the fundamental mechanisms behind tumour immunosuppression, and for new and innovative therapeutic strategies to be tested. Exosomes have recently emerged as crucial players in the cell-cell communication and content exchange within the tumour microenvironment and have also been investigated for their capacity to act as cancer therapeutics or to be re-engineered to increase their performances and effects. In this work, two main research areas were explored. The first one focused on advanced ovarian cancer modelling. Indeed, the in vitro formation of multicellular spheroids that included a mixture of cancer cells and different macrophage phenotypes was optimised, and their characteristics explored. Additionally, an in vivo advanced OC model was created from immunocompetent mice and the tumours were characterised for their immune infiltrates presence. The ascitic fluid that arose from the tumour-bearing mice was also comprehensively analysed for its immune cells content by mass cytometry for the first time in an ovarian cancer setting. The second part of the work involved the exploration of two innovative OC therapeutics. Dendritic-cell (DC) derived exosomes were obtained from tumour antigen-pulsed DCs and tested for their efficacy both in vitro and in vivo. A semi-synthetic exosomes approach was also tested by forcing monocytic cells through pores of different sizes and obtaining Immune (Cell) Derived Exosome Mimetics (IDEM). IDEM were characterised and tested in vitro on both 2D and spheroid systems.</abstract><type>E-Thesis</type><journal/><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication>Swansea</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Exosomes, Ovarian cancer, Immunotherapy, Animal Models</keywords><publishedDay>25</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-11-25</publishedDate><doi>10.23889/SUthesis.58791</doi><url/><notes>A selection of third party content is redacted or is partially redacted from this thesis due to copyright restrictions.ORCiD identifier: https://orcid.org/0000-0002-5412-1241</notes><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><supervisor>Gonzalez, Deyarina; Conlan, Steven ; Corradetti, Bruna</supervisor><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><degreesponsorsfunders>Swansea University, Houston Methodist Research Institute</degreesponsorsfunders><apcterm/><lastEdited>2021-11-25T15:06:30.5304198</lastEdited><Created>2021-11-25T14:47:34.2946228</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>SIMONE</firstname><surname>PISANO</surname><order>1</order></author></authors><documents><document><filename>Under embargo</filename><originalFilename>Under embargo</originalFilename><uploaded>2021-11-25T15:00:56.6646277</uploaded><type>Output</type><contentLength>10768033</contentLength><contentType>application/pdf</contentType><version>Redacted version - open access</version><cronfaStatus>true</cronfaStatus><embargoDate>2026-10-10T00:00:00.0000000</embargoDate><documentNotes>Copyright: The author, Simone Pisano, 2021.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-11-25T15:06:30.5304198 v2 58791 2021-11-25 Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics a121612db79215480a2adbc16e52e5ea SIMONE PISANO SIMONE PISANO true false 2021-11-25 Treatment of ovarian cancer (OC) continues to present clinical challenges. It remains difficult to diagnose early stage disease, and because of this generally presents as advanced stage, with limited therapeutic options and often the development of resistance to chemotherapy. Furthermore, OC is considered as an immunologically “cold” tumour based on the poor response to immunotherapies. This lack of response to immunotherapy remains poorly understood, hence better models are needed in order to elucidate the fundamental mechanisms behind tumour immunosuppression, and for new and innovative therapeutic strategies to be tested. Exosomes have recently emerged as crucial players in the cell-cell communication and content exchange within the tumour microenvironment and have also been investigated for their capacity to act as cancer therapeutics or to be re-engineered to increase their performances and effects. In this work, two main research areas were explored. The first one focused on advanced ovarian cancer modelling. Indeed, the in vitro formation of multicellular spheroids that included a mixture of cancer cells and different macrophage phenotypes was optimised, and their characteristics explored. Additionally, an in vivo advanced OC model was created from immunocompetent mice and the tumours were characterised for their immune infiltrates presence. The ascitic fluid that arose from the tumour-bearing mice was also comprehensively analysed for its immune cells content by mass cytometry for the first time in an ovarian cancer setting. The second part of the work involved the exploration of two innovative OC therapeutics. Dendritic-cell (DC) derived exosomes were obtained from tumour antigen-pulsed DCs and tested for their efficacy both in vitro and in vivo. A semi-synthetic exosomes approach was also tested by forcing monocytic cells through pores of different sizes and obtaining Immune (Cell) Derived Exosome Mimetics (IDEM). IDEM were characterised and tested in vitro on both 2D and spheroid systems. E-Thesis Swansea Exosomes, Ovarian cancer, Immunotherapy, Animal Models 25 11 2021 2021-11-25 10.23889/SUthesis.58791 A selection of third party content is redacted or is partially redacted from this thesis due to copyright restrictions.ORCiD identifier: https://orcid.org/0000-0002-5412-1241 COLLEGE NANME COLLEGE CODE Swansea University Gonzalez, Deyarina; Conlan, Steven ; Corradetti, Bruna Doctoral Ph.D Swansea University, Houston Methodist Research Institute 2021-11-25T15:06:30.5304198 2021-11-25T14:47:34.2946228 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine SIMONE PISANO 1 Under embargo Under embargo 2021-11-25T15:00:56.6646277 Output 10768033 application/pdf Redacted version - open access true 2026-10-10T00:00:00.0000000 Copyright: The author, Simone Pisano, 2021. true eng |
title |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics |
spellingShingle |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics SIMONE PISANO |
title_short |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics |
title_full |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics |
title_fullStr |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics |
title_full_unstemmed |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics |
title_sort |
Exosome-based immunotherapies in ovarian cancer development of preclinical models and therapeutics |
author_id_str_mv |
a121612db79215480a2adbc16e52e5ea |
author_id_fullname_str_mv |
a121612db79215480a2adbc16e52e5ea_***_SIMONE PISANO |
author |
SIMONE PISANO |
author2 |
SIMONE PISANO |
format |
E-Thesis |
publishDate |
2021 |
institution |
Swansea University |
doi_str_mv |
10.23889/SUthesis.58791 |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
document_store_str |
0 |
active_str |
0 |
description |
Treatment of ovarian cancer (OC) continues to present clinical challenges. It remains difficult to diagnose early stage disease, and because of this generally presents as advanced stage, with limited therapeutic options and often the development of resistance to chemotherapy. Furthermore, OC is considered as an immunologically “cold” tumour based on the poor response to immunotherapies. This lack of response to immunotherapy remains poorly understood, hence better models are needed in order to elucidate the fundamental mechanisms behind tumour immunosuppression, and for new and innovative therapeutic strategies to be tested. Exosomes have recently emerged as crucial players in the cell-cell communication and content exchange within the tumour microenvironment and have also been investigated for their capacity to act as cancer therapeutics or to be re-engineered to increase their performances and effects. In this work, two main research areas were explored. The first one focused on advanced ovarian cancer modelling. Indeed, the in vitro formation of multicellular spheroids that included a mixture of cancer cells and different macrophage phenotypes was optimised, and their characteristics explored. Additionally, an in vivo advanced OC model was created from immunocompetent mice and the tumours were characterised for their immune infiltrates presence. The ascitic fluid that arose from the tumour-bearing mice was also comprehensively analysed for its immune cells content by mass cytometry for the first time in an ovarian cancer setting. The second part of the work involved the exploration of two innovative OC therapeutics. Dendritic-cell (DC) derived exosomes were obtained from tumour antigen-pulsed DCs and tested for their efficacy both in vitro and in vivo. A semi-synthetic exosomes approach was also tested by forcing monocytic cells through pores of different sizes and obtaining Immune (Cell) Derived Exosome Mimetics (IDEM). IDEM were characterised and tested in vitro on both 2D and spheroid systems. |
published_date |
2021-11-25T04:15:36Z |
_version_ |
1763754048884834304 |
score |
11.037581 |