No Cover Image

Journal article 691 views 120 downloads

A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells

Jiaying Wu, Hyojung Cha, Tian Du, Yifan Dong, Weidong Xu, Chieh‐Ting Lin, James Durrant Orcid Logo

Advanced Materials, Volume: 34, Issue: 2, Start page: 2101833

Swansea University Author: James Durrant Orcid Logo

  • adma.202101833.pdf

    PDF | Version of Record

    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

    Download (3.37MB)

Check full text

DOI (Published version): 10.1002/adma.202101833

Abstract

The charge carrier dynamics in organic solar cells and organic–inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin‐film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and c...

Full description

Published in: Advanced Materials
ISSN: 0935-9648 1521-4095
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58653
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-11-15T10:17:59Z
last_indexed 2022-01-26T04:28:38Z
id cronfa58653
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-01-25T14:59:06.2369800</datestamp><bib-version>v2</bib-version><id>58653</id><entry>2021-11-15</entry><title>A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-11-15</date><deptcode>MTLS</deptcode><abstract>The charge carrier dynamics in organic solar cells and organic&#x2013;inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin&#x2010;film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub&#x2010;bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells.</abstract><type>Journal Article</type><journal>Advanced Materials</journal><volume>34</volume><journalNumber>2</journalNumber><paginationStart>2101833</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0935-9648</issnPrint><issnElectronic>1521-4095</issnElectronic><keywords>charge recombination; charge transport; charge trapping; photophysics; solar cells</keywords><publishedDay>13</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-01-13</publishedDate><doi>10.1002/adma.202101833</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>UKRI Global Challenge Research Fund Grant: EP/P032591/1 Engineering and Physical Sciences Research Council Grant: EP/T028513/1 Identifier: Id http://dx.doi.org/10.13039/501100000266 Korean NRF GRL project Grant: NRF&#x2010;2017K1A1A2013153 China Scholarship Imperial College London Identifier: Id http://dx.doi.org/10.13039/501100000761 National Research Foundation of Korea Grant: NRF&#x2010;2021R1C1C100903 Grant: NRF&#x2010;2021R1A4A1031761 Identifier: Id http://dx.doi.org/10.13039/501100003725 Engineering and Physical Sciences Research Council Grant: EP/T028513/1 Identifier: Id http://dx.doi.org/10.13039/501100000266</funders><lastEdited>2022-01-25T14:59:06.2369800</lastEdited><Created>2021-11-15T10:14:07.4806493</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Jiaying</firstname><surname>Wu</surname><order>1</order></author><author><firstname>Hyojung</firstname><surname>Cha</surname><order>2</order></author><author><firstname>Tian</firstname><surname>Du</surname><order>3</order></author><author><firstname>Yifan</firstname><surname>Dong</surname><order>4</order></author><author><firstname>Weidong</firstname><surname>Xu</surname><order>5</order></author><author><firstname>Chieh&#x2010;Ting</firstname><surname>Lin</surname><order>6</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>7</order></author></authors><documents><document><filename>58653__21526__44fe5979baf543849eddea41606cb742.pdf</filename><originalFilename>adma.202101833.pdf</originalFilename><uploaded>2021-11-15T10:14:07.4423792</uploaded><type>Output</type><contentLength>3531828</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-01-25T14:59:06.2369800 v2 58653 2021-11-15 A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2021-11-15 MTLS The charge carrier dynamics in organic solar cells and organic–inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin‐film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub‐bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells. Journal Article Advanced Materials 34 2 2101833 Wiley 0935-9648 1521-4095 charge recombination; charge transport; charge trapping; photophysics; solar cells 13 1 2022 2022-01-13 10.1002/adma.202101833 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University UKRI Global Challenge Research Fund Grant: EP/P032591/1 Engineering and Physical Sciences Research Council Grant: EP/T028513/1 Identifier: Id http://dx.doi.org/10.13039/501100000266 Korean NRF GRL project Grant: NRF‐2017K1A1A2013153 China Scholarship Imperial College London Identifier: Id http://dx.doi.org/10.13039/501100000761 National Research Foundation of Korea Grant: NRF‐2021R1C1C100903 Grant: NRF‐2021R1A4A1031761 Identifier: Id http://dx.doi.org/10.13039/501100003725 Engineering and Physical Sciences Research Council Grant: EP/T028513/1 Identifier: Id http://dx.doi.org/10.13039/501100000266 2022-01-25T14:59:06.2369800 2021-11-15T10:14:07.4806493 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Jiaying Wu 1 Hyojung Cha 2 Tian Du 3 Yifan Dong 4 Weidong Xu 5 Chieh‐Ting Lin 6 James Durrant 0000-0001-8353-7345 7 58653__21526__44fe5979baf543849eddea41606cb742.pdf adma.202101833.pdf 2021-11-15T10:14:07.4423792 Output 3531828 application/pdf Version of Record true This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. true eng http://creativecommons.org/licenses/by/4.0/
title A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
spellingShingle A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
James Durrant
title_short A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
title_full A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
title_fullStr A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
title_full_unstemmed A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
title_sort A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
author_id_str_mv f3dd64bc260e5c07adfa916c27dbd58a
author_id_fullname_str_mv f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
author James Durrant
author2 Jiaying Wu
Hyojung Cha
Tian Du
Yifan Dong
Weidong Xu
Chieh‐Ting Lin
James Durrant
format Journal article
container_title Advanced Materials
container_volume 34
container_issue 2
container_start_page 2101833
publishDate 2022
institution Swansea University
issn 0935-9648
1521-4095
doi_str_mv 10.1002/adma.202101833
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description The charge carrier dynamics in organic solar cells and organic–inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin‐film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub‐bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells.
published_date 2022-01-13T04:15:20Z
_version_ 1763754032178921472
score 11.013619