No Cover Image

Journal article 763 views 137 downloads

Global well-posedness of 2D stochastic Burgers equations with multiplicative noise

Guoli Zhou, Lidan Wang Orcid Logo, Jiang-lun Wu

Statistics & Probability Letters, Volume: 182, Issue: March 2022, Start page: 109315

Swansea University Author: Jiang-lun Wu

  • ZhouWangWu_SPL revision.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (272.54KB)

Abstract

In this article, we study 2D stochastic Burgers equations driven by linear multiplicative noise, and with non-periodic boundary conditions. We first apply Galerkin approximation method to show the local existence and uniqueness of strong solutions, we then establish the global well-posedness for str...

Full description

Published in: Statistics & Probability Letters
ISSN: 0167-7152 0167-7152
Published: Elsevier BV 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58540
first_indexed 2021-11-03T10:45:52Z
last_indexed 2023-01-11T14:39:12Z
id cronfa58540
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-11-15T15:29:30.8861084</datestamp><bib-version>v2</bib-version><id>58540</id><entry>2021-11-03</entry><title>Global well-posedness of 2D stochastic Burgers equations with multiplicative noise</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-11-03</date><abstract>In this article, we study 2D stochastic Burgers equations driven by linear multiplicative noise, and with non-periodic boundary conditions. We first apply Galerkin approximation method to show the local existence and uniqueness of strong solutions, we then establish the global well-posedness for strong solutions by utilizing the maximum principle.</abstract><type>Journal Article</type><journal>Statistics &amp; Probability Letters</journal><volume>182</volume><journalNumber>March 2022</journalNumber><paginationStart>109315</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0167-7152</issnPrint><issnElectronic>0167-7152</issnElectronic><keywords>Stochastic 2D Burgers equations; global well-posedness; Galerkin approximation; maximum principle.</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-01</publishedDate><doi>10.1016/j.spl.2021.109315</doi><url>http://dx.doi.org/10.1016/j.spl.2021.109315</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Other</apcterm><funders/><projectreference/><lastEdited>2022-11-15T15:29:30.8861084</lastEdited><Created>2021-11-03T10:37:02.0959781</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Guoli</firstname><surname>Zhou</surname><order>1</order></author><author><firstname>Lidan</firstname><surname>Wang</surname><orcid>0000-0002-9438-7116</orcid><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>58540__21418__85731913439141529d4578a3ebf1f406.pdf</filename><originalFilename>ZhouWangWu_SPL revision.pdf</originalFilename><uploaded>2021-11-03T10:44:57.9434237</uploaded><type>Output</type><contentLength>279077</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-11-22T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-11-15T15:29:30.8861084 v2 58540 2021-11-03 Global well-posedness of 2D stochastic Burgers equations with multiplicative noise dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2021-11-03 In this article, we study 2D stochastic Burgers equations driven by linear multiplicative noise, and with non-periodic boundary conditions. We first apply Galerkin approximation method to show the local existence and uniqueness of strong solutions, we then establish the global well-posedness for strong solutions by utilizing the maximum principle. Journal Article Statistics & Probability Letters 182 March 2022 109315 Elsevier BV 0167-7152 0167-7152 Stochastic 2D Burgers equations; global well-posedness; Galerkin approximation; maximum principle. 1 3 2022 2022-03-01 10.1016/j.spl.2021.109315 http://dx.doi.org/10.1016/j.spl.2021.109315 COLLEGE NANME COLLEGE CODE Swansea University Other 2022-11-15T15:29:30.8861084 2021-11-03T10:37:02.0959781 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Guoli Zhou 1 Lidan Wang 0000-0002-9438-7116 2 Jiang-lun Wu 3 58540__21418__85731913439141529d4578a3ebf1f406.pdf ZhouWangWu_SPL revision.pdf 2021-11-03T10:44:57.9434237 Output 279077 application/pdf Accepted Manuscript true 2022-11-22T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
spellingShingle Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
Jiang-lun Wu
title_short Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
title_full Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
title_fullStr Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
title_full_unstemmed Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
title_sort Global well-posedness of 2D stochastic Burgers equations with multiplicative noise
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Guoli Zhou
Lidan Wang
Jiang-lun Wu
format Journal article
container_title Statistics & Probability Letters
container_volume 182
container_issue March 2022
container_start_page 109315
publishDate 2022
institution Swansea University
issn 0167-7152
0167-7152
doi_str_mv 10.1016/j.spl.2021.109315
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1016/j.spl.2021.109315
document_store_str 1
active_str 0
description In this article, we study 2D stochastic Burgers equations driven by linear multiplicative noise, and with non-periodic boundary conditions. We first apply Galerkin approximation method to show the local existence and uniqueness of strong solutions, we then establish the global well-posedness for strong solutions by utilizing the maximum principle.
published_date 2022-03-01T20:07:05Z
_version_ 1821346759515832320
score 11.04748