No Cover Image

Journal article 801 views 73 downloads

Stirling operators in spatial combinatorics

Dmitri Finkelshtein Orcid Logo, Yuri Kondratiev, Eugene Lytvynov Orcid Logo, Maria João Oliveira

Journal of Functional Analysis, Volume: 282, Issue: 2, Start page: 109285

Swansea University Authors: Dmitri Finkelshtein Orcid Logo, Eugene Lytvynov Orcid Logo

  • Second revision.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (396.53KB)

Abstract

We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol $(m)_n$ can be extended from a natural number $m\in\mathbb N$ to the falling factorials $(z)_n=z(z-1)\dotsm (z-n+1)$ of an argument $z$ from $\mathbb F=\mathbb R\te...

Full description

Published in: Journal of Functional Analysis
ISSN: 0022-1236
Published: Elsevier BV 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58358
first_indexed 2021-10-15T14:49:33Z
last_indexed 2023-01-11T14:38:54Z
id cronfa58358
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-27T11:33:56.3961982</datestamp><bib-version>v2</bib-version><id>58358</id><entry>2021-10-15</entry><title>Stirling operators in spatial combinatorics</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-15</date><deptcode>MACS</deptcode><abstract>We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol $(m)_n$ can be extended from a natural number $m\in\mathbb N$ to the falling factorials $(z)_n=z(z-1)\dotsm (z-n+1)$ of an argument $z$ from $\mathbb F=\mathbb R\text{ or }\mathbb C$, and Stirling numbers of the first and second kinds are the coefficients of the expansions of $(z)_n$ through $z^k$, $k\leq n$ and vice versa. When taking into account spatial positions of elements in a locally compact Polish space $X$, we replace $\mathbb N$ by the space of configurations---discrete Radon measures $\gamma=\sum_i\delta_{x_i}$ on $X$, where $\delta_{x_i}$ is the Dirac measure with mass at $x_i$. The spatial falling factorials $(\gamma)_n:=\sum_{i_1}\sum_{i_2\ne i_1}\dotsm\sum_{i_n\ne i_1,\dots, i_n\ne i_{n-1}}\delta_{(x_{i_1},x_{i_2},\dots,x_{i_n})}$ can be naturally extended to mappings $M^{(1)}(X)\ni\omega\mapsto (\omega)_n\in M^{(n)}(X)$, where $M^{(n)}(X)$ denotes the space of $\mathbb F$-valued, symmetric (for $n\ge2$) Radon measures on $X^n$. There is a natural duality between $M^{(n)}(X)$ and the space $\mathcal {CF}^{(n)}(X)$ of $\mathbb F$-valued, symmetric continuous functions on $X^n$ with compact support. The Stirling operators of the first and second kind, $\mathbf{s}(n,k)$ and $\mathbf{S}(n,k)$, are linear operators, acting between spaces $\mathcal {CF}^{(n)}(X)$ and $\mathcal {CF}^{(k)}(X)$ such that their dual operators, acting from $M^{(k)}(X)$ into $M^{(n)}(X)$, satisfy $(\omega)_n=\sum_{k=1}^n\mathbf{s}(n,k)^*\omega^{\otimes k}$ and $\omega^{\otimes n}=\sum_{k=1}^n\mathbf{S}(n,k)^*(\omega)_k$, respectively. In the case where $X$ has only a single point, the Stirling operators can be identified with Stirling numbers. We derive combinatorial properties of the Stirling operators, present their connections with a generalization of the Poisson point process and with the Wick ordering under the canonical commutation relations.</abstract><type>Journal Article</type><journal>Journal of Functional Analysis</journal><volume>282</volume><journalNumber>2</journalNumber><paginationStart>109285</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-1236</issnPrint><issnElectronic/><keywords>Spatial falling factorials; Stirling operators; Poisson functional; Wick ordering for canonical commutation relations</keywords><publishedDay>15</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-01-15</publishedDate><doi>10.1016/j.jfa.2021.109285</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-27T11:33:56.3961982</lastEdited><Created>2021-10-15T15:42:58.8682689</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author><author><firstname>Maria Jo&#xE3;o</firstname><surname>Oliveira</surname><order>4</order></author></authors><documents><document><filename>58358__21177__028b8315bfa94591a245ab1865d5cbbd.pdf</filename><originalFilename>Second revision.pdf</originalFilename><uploaded>2021-10-15T15:47:16.9161153</uploaded><type>Output</type><contentLength>406045</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-10-19T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-27T11:33:56.3961982 v2 58358 2021-10-15 Stirling operators in spatial combinatorics 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2021-10-15 MACS We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol $(m)_n$ can be extended from a natural number $m\in\mathbb N$ to the falling factorials $(z)_n=z(z-1)\dotsm (z-n+1)$ of an argument $z$ from $\mathbb F=\mathbb R\text{ or }\mathbb C$, and Stirling numbers of the first and second kinds are the coefficients of the expansions of $(z)_n$ through $z^k$, $k\leq n$ and vice versa. When taking into account spatial positions of elements in a locally compact Polish space $X$, we replace $\mathbb N$ by the space of configurations---discrete Radon measures $\gamma=\sum_i\delta_{x_i}$ on $X$, where $\delta_{x_i}$ is the Dirac measure with mass at $x_i$. The spatial falling factorials $(\gamma)_n:=\sum_{i_1}\sum_{i_2\ne i_1}\dotsm\sum_{i_n\ne i_1,\dots, i_n\ne i_{n-1}}\delta_{(x_{i_1},x_{i_2},\dots,x_{i_n})}$ can be naturally extended to mappings $M^{(1)}(X)\ni\omega\mapsto (\omega)_n\in M^{(n)}(X)$, where $M^{(n)}(X)$ denotes the space of $\mathbb F$-valued, symmetric (for $n\ge2$) Radon measures on $X^n$. There is a natural duality between $M^{(n)}(X)$ and the space $\mathcal {CF}^{(n)}(X)$ of $\mathbb F$-valued, symmetric continuous functions on $X^n$ with compact support. The Stirling operators of the first and second kind, $\mathbf{s}(n,k)$ and $\mathbf{S}(n,k)$, are linear operators, acting between spaces $\mathcal {CF}^{(n)}(X)$ and $\mathcal {CF}^{(k)}(X)$ such that their dual operators, acting from $M^{(k)}(X)$ into $M^{(n)}(X)$, satisfy $(\omega)_n=\sum_{k=1}^n\mathbf{s}(n,k)^*\omega^{\otimes k}$ and $\omega^{\otimes n}=\sum_{k=1}^n\mathbf{S}(n,k)^*(\omega)_k$, respectively. In the case where $X$ has only a single point, the Stirling operators can be identified with Stirling numbers. We derive combinatorial properties of the Stirling operators, present their connections with a generalization of the Poisson point process and with the Wick ordering under the canonical commutation relations. Journal Article Journal of Functional Analysis 282 2 109285 Elsevier BV 0022-1236 Spatial falling factorials; Stirling operators; Poisson functional; Wick ordering for canonical commutation relations 15 1 2022 2022-01-15 10.1016/j.jfa.2021.109285 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2022-10-27T11:33:56.3961982 2021-10-15T15:42:58.8682689 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Eugene Lytvynov 0000-0001-9685-7727 3 Maria João Oliveira 4 58358__21177__028b8315bfa94591a245ab1865d5cbbd.pdf Second revision.pdf 2021-10-15T15:47:16.9161153 Output 406045 application/pdf Accepted Manuscript true 2022-10-19T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Stirling operators in spatial combinatorics
spellingShingle Stirling operators in spatial combinatorics
Dmitri Finkelshtein
Eugene Lytvynov
title_short Stirling operators in spatial combinatorics
title_full Stirling operators in spatial combinatorics
title_fullStr Stirling operators in spatial combinatorics
title_full_unstemmed Stirling operators in spatial combinatorics
title_sort Stirling operators in spatial combinatorics
author_id_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf
e5b4fef159d90a480b1961cef89a17b7
author_id_fullname_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein
e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov
author Dmitri Finkelshtein
Eugene Lytvynov
author2 Dmitri Finkelshtein
Yuri Kondratiev
Eugene Lytvynov
Maria João Oliveira
format Journal article
container_title Journal of Functional Analysis
container_volume 282
container_issue 2
container_start_page 109285
publishDate 2022
institution Swansea University
issn 0022-1236
doi_str_mv 10.1016/j.jfa.2021.109285
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol $(m)_n$ can be extended from a natural number $m\in\mathbb N$ to the falling factorials $(z)_n=z(z-1)\dotsm (z-n+1)$ of an argument $z$ from $\mathbb F=\mathbb R\text{ or }\mathbb C$, and Stirling numbers of the first and second kinds are the coefficients of the expansions of $(z)_n$ through $z^k$, $k\leq n$ and vice versa. When taking into account spatial positions of elements in a locally compact Polish space $X$, we replace $\mathbb N$ by the space of configurations---discrete Radon measures $\gamma=\sum_i\delta_{x_i}$ on $X$, where $\delta_{x_i}$ is the Dirac measure with mass at $x_i$. The spatial falling factorials $(\gamma)_n:=\sum_{i_1}\sum_{i_2\ne i_1}\dotsm\sum_{i_n\ne i_1,\dots, i_n\ne i_{n-1}}\delta_{(x_{i_1},x_{i_2},\dots,x_{i_n})}$ can be naturally extended to mappings $M^{(1)}(X)\ni\omega\mapsto (\omega)_n\in M^{(n)}(X)$, where $M^{(n)}(X)$ denotes the space of $\mathbb F$-valued, symmetric (for $n\ge2$) Radon measures on $X^n$. There is a natural duality between $M^{(n)}(X)$ and the space $\mathcal {CF}^{(n)}(X)$ of $\mathbb F$-valued, symmetric continuous functions on $X^n$ with compact support. The Stirling operators of the first and second kind, $\mathbf{s}(n,k)$ and $\mathbf{S}(n,k)$, are linear operators, acting between spaces $\mathcal {CF}^{(n)}(X)$ and $\mathcal {CF}^{(k)}(X)$ such that their dual operators, acting from $M^{(k)}(X)$ into $M^{(n)}(X)$, satisfy $(\omega)_n=\sum_{k=1}^n\mathbf{s}(n,k)^*\omega^{\otimes k}$ and $\omega^{\otimes n}=\sum_{k=1}^n\mathbf{S}(n,k)^*(\omega)_k$, respectively. In the case where $X$ has only a single point, the Stirling operators can be identified with Stirling numbers. We derive combinatorial properties of the Stirling operators, present their connections with a generalization of the Poisson point process and with the Wick ordering under the canonical commutation relations.
published_date 2022-01-15T05:15:03Z
_version_ 1821562427933720576
score 11.294684