No Cover Image

Journal article 711 views 140 downloads

Animal lifestyle affects acceptable mass limits for attached tags

Rory Wilson Orcid Logo, Kayleigh Rose Orcid Logo, Richard Gunner, Richard Gunner, Mark Holton Orcid Logo, Nikki J. Marks, Nigel C. Bennett, Stephen H. Bell, Joshua P. Twining, Jamie Hesketh, Carlos M. Duarte, Neil Bezodis Orcid Logo, Milos Jezek, Michael Painter, Vaclav Silovsky, Margaret C. Crofoot, Roi Harel, John P. Y. Arnould, Blake M. Allan, Desley A. Whisson, Abdulaziz Alagaili, D. Michael Scantlebury

Proceedings of the Royal Society B: Biological Sciences, Volume: 288, Issue: 1961

Swansea University Authors: Rory Wilson Orcid Logo, Kayleigh Rose Orcid Logo, Richard Gunner, Mark Holton Orcid Logo, Neil Bezodis Orcid Logo

Check full text

DOI (Published version): 10.1098/rspb.2021.2005

Abstract

Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attach...

Full description

Published in: Proceedings of the Royal Society B: Biological Sciences
ISSN: 0962-8452 1471-2954
Published: The Royal Society 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58306
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-10-28T14:37:18Z
last_indexed 2021-11-02T04:24:37Z
id cronfa58306
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-11-01T13:18:26.7694732</datestamp><bib-version>v2</bib-version><id>58306</id><entry>2021-10-13</entry><title>Animal lifestyle affects acceptable mass limits for attached tags</title><swanseaauthors><author><sid>017bc6dd155098860945dc6249c4e9bc</sid><ORCID>0000-0003-3177-0177</ORCID><firstname>Rory</firstname><surname>Wilson</surname><name>Rory Wilson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>83a47731b96af0d69fcbdb6c4c5a20aa</sid><ORCID>0000-0001-7023-2809</ORCID><firstname>Kayleigh</firstname><surname>Rose</surname><name>Kayleigh Rose</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2683356ac0ac5d43946ac1f5b93e00e3</sid><firstname>Richard</firstname><surname>Gunner</surname><name>Richard Gunner</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0e1d89d0cc934a740dcd0a873aed178e</sid><ORCID>0000-0001-8834-3283</ORCID><firstname>Mark</firstname><surname>Holton</surname><name>Mark Holton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>534588568c1936e94e1ed8527b8c991b</sid><ORCID>0000-0003-2229-3310</ORCID><firstname>Neil</firstname><surname>Bezodis</surname><name>Neil Bezodis</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-13</date><deptcode>SBI</deptcode><abstract>Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attached accelerometers on 10 diverse free-ranging terrestrial species from koalas to cheetahs, we detail a tag-based acceleration method to clarify acceptable tag mass limits. We quantify animal athleticism in terms of fractions of animal movement time devoted to different collar-recorded accelerations and convert those accelerations to forces (acceleration x tag mass) to allow derivation of any defined force limits for specified fractions of any animal&#x2019;s active time. Specifying that tags should exert forces &lt;3% of the gravitational force exerted on the animal's body for 95% of the time led to corrected tag masses that should constitute between 1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in four carnivore species encompassing two orders of magnitude in mass (ca. 2-200 kg), forces exerted by &#x2018;3%&#x2019; tags were equivalent to 4-19% of carrier body mass during moving, with a maximum of 54% in a hunting cheetah. This fundamentally changes how acceptable tag mass limits should be determined by ethics bodies, irrespective of force and time limits specified.</abstract><type>Journal Article</type><journal>Proceedings of the Royal Society B: Biological Sciences</journal><volume>288</volume><journalNumber>1961</journalNumber><paginationStart/><paginationEnd/><publisher>The Royal Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0962-8452</issnPrint><issnElectronic>1471-2954</issnElectronic><keywords/><publishedDay>27</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-27</publishedDate><doi>10.1098/rspb.2021.2005</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SBI</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-11-01T13:18:26.7694732</lastEdited><Created>2021-10-13T09:25:29.3778832</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Rory</firstname><surname>Wilson</surname><orcid>0000-0003-3177-0177</orcid><order>1</order></author><author><firstname>Kayleigh</firstname><surname>Rose</surname><orcid>0000-0001-7023-2809</orcid><order>2</order></author><author><firstname>Richard</firstname><surname>Gunner</surname><order>3</order></author><author><firstname>Richard</firstname><surname>Gunner</surname><order>4</order></author><author><firstname>Mark</firstname><surname>Holton</surname><orcid>0000-0001-8834-3283</orcid><order>5</order></author><author><firstname>Nikki J.</firstname><surname>Marks</surname><order>6</order></author><author><firstname>Nigel C.</firstname><surname>Bennett</surname><order>7</order></author><author><firstname>Stephen H.</firstname><surname>Bell</surname><order>8</order></author><author><firstname>Joshua P.</firstname><surname>Twining</surname><order>9</order></author><author><firstname>Jamie</firstname><surname>Hesketh</surname><order>10</order></author><author><firstname>Carlos M.</firstname><surname>Duarte</surname><order>11</order></author><author><firstname>Neil</firstname><surname>Bezodis</surname><orcid>0000-0003-2229-3310</orcid><order>12</order></author><author><firstname>Milos</firstname><surname>Jezek</surname><order>13</order></author><author><firstname>Michael</firstname><surname>Painter</surname><order>14</order></author><author><firstname>Vaclav</firstname><surname>Silovsky</surname><order>15</order></author><author><firstname>Margaret C.</firstname><surname>Crofoot</surname><order>16</order></author><author><firstname>Roi</firstname><surname>Harel</surname><order>17</order></author><author><firstname>John P. Y.</firstname><surname>Arnould</surname><order>18</order></author><author><firstname>Blake M.</firstname><surname>Allan</surname><order>19</order></author><author><firstname>Desley A.</firstname><surname>Whisson</surname><order>20</order></author><author><firstname>Abdulaziz</firstname><surname>Alagaili</surname><order>21</order></author><author><firstname>D. Michael</firstname><surname>Scantlebury</surname><order>22</order></author></authors><documents><document><filename>58306__21383__f9fd29b530a247fb97b86713bed5b90a.pdf</filename><originalFilename>58306.pdf</originalFilename><uploaded>2021-11-01T13:17:06.4902379</uploaded><type>Output</type><contentLength>692037</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-11-01T13:18:26.7694732 v2 58306 2021-10-13 Animal lifestyle affects acceptable mass limits for attached tags 017bc6dd155098860945dc6249c4e9bc 0000-0003-3177-0177 Rory Wilson Rory Wilson true false 83a47731b96af0d69fcbdb6c4c5a20aa 0000-0001-7023-2809 Kayleigh Rose Kayleigh Rose true false 2683356ac0ac5d43946ac1f5b93e00e3 Richard Gunner Richard Gunner true false 0e1d89d0cc934a740dcd0a873aed178e 0000-0001-8834-3283 Mark Holton Mark Holton true false 534588568c1936e94e1ed8527b8c991b 0000-0003-2229-3310 Neil Bezodis Neil Bezodis true false 2021-10-13 SBI Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attached accelerometers on 10 diverse free-ranging terrestrial species from koalas to cheetahs, we detail a tag-based acceleration method to clarify acceptable tag mass limits. We quantify animal athleticism in terms of fractions of animal movement time devoted to different collar-recorded accelerations and convert those accelerations to forces (acceleration x tag mass) to allow derivation of any defined force limits for specified fractions of any animal’s active time. Specifying that tags should exert forces <3% of the gravitational force exerted on the animal's body for 95% of the time led to corrected tag masses that should constitute between 1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in four carnivore species encompassing two orders of magnitude in mass (ca. 2-200 kg), forces exerted by ‘3%’ tags were equivalent to 4-19% of carrier body mass during moving, with a maximum of 54% in a hunting cheetah. This fundamentally changes how acceptable tag mass limits should be determined by ethics bodies, irrespective of force and time limits specified. Journal Article Proceedings of the Royal Society B: Biological Sciences 288 1961 The Royal Society 0962-8452 1471-2954 27 10 2021 2021-10-27 10.1098/rspb.2021.2005 COLLEGE NANME Biosciences COLLEGE CODE SBI Swansea University 2021-11-01T13:18:26.7694732 2021-10-13T09:25:29.3778832 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Rory Wilson 0000-0003-3177-0177 1 Kayleigh Rose 0000-0001-7023-2809 2 Richard Gunner 3 Richard Gunner 4 Mark Holton 0000-0001-8834-3283 5 Nikki J. Marks 6 Nigel C. Bennett 7 Stephen H. Bell 8 Joshua P. Twining 9 Jamie Hesketh 10 Carlos M. Duarte 11 Neil Bezodis 0000-0003-2229-3310 12 Milos Jezek 13 Michael Painter 14 Vaclav Silovsky 15 Margaret C. Crofoot 16 Roi Harel 17 John P. Y. Arnould 18 Blake M. Allan 19 Desley A. Whisson 20 Abdulaziz Alagaili 21 D. Michael Scantlebury 22 58306__21383__f9fd29b530a247fb97b86713bed5b90a.pdf 58306.pdf 2021-11-01T13:17:06.4902379 Output 692037 application/pdf Accepted Manuscript true true eng
title Animal lifestyle affects acceptable mass limits for attached tags
spellingShingle Animal lifestyle affects acceptable mass limits for attached tags
Rory Wilson
Kayleigh Rose
Richard Gunner
Mark Holton
Neil Bezodis
title_short Animal lifestyle affects acceptable mass limits for attached tags
title_full Animal lifestyle affects acceptable mass limits for attached tags
title_fullStr Animal lifestyle affects acceptable mass limits for attached tags
title_full_unstemmed Animal lifestyle affects acceptable mass limits for attached tags
title_sort Animal lifestyle affects acceptable mass limits for attached tags
author_id_str_mv 017bc6dd155098860945dc6249c4e9bc
83a47731b96af0d69fcbdb6c4c5a20aa
2683356ac0ac5d43946ac1f5b93e00e3
0e1d89d0cc934a740dcd0a873aed178e
534588568c1936e94e1ed8527b8c991b
author_id_fullname_str_mv 017bc6dd155098860945dc6249c4e9bc_***_Rory Wilson
83a47731b96af0d69fcbdb6c4c5a20aa_***_Kayleigh Rose
2683356ac0ac5d43946ac1f5b93e00e3_***_Richard Gunner
0e1d89d0cc934a740dcd0a873aed178e_***_Mark Holton
534588568c1936e94e1ed8527b8c991b_***_Neil Bezodis
author Rory Wilson
Kayleigh Rose
Richard Gunner
Mark Holton
Neil Bezodis
author2 Rory Wilson
Kayleigh Rose
Richard Gunner
Richard Gunner
Mark Holton
Nikki J. Marks
Nigel C. Bennett
Stephen H. Bell
Joshua P. Twining
Jamie Hesketh
Carlos M. Duarte
Neil Bezodis
Milos Jezek
Michael Painter
Vaclav Silovsky
Margaret C. Crofoot
Roi Harel
John P. Y. Arnould
Blake M. Allan
Desley A. Whisson
Abdulaziz Alagaili
D. Michael Scantlebury
format Journal article
container_title Proceedings of the Royal Society B: Biological Sciences
container_volume 288
container_issue 1961
publishDate 2021
institution Swansea University
issn 0962-8452
1471-2954
doi_str_mv 10.1098/rspb.2021.2005
publisher The Royal Society
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences
document_store_str 1
active_str 0
description Animal-attached devices have transformed our understanding of vertebrate ecology. To minimize any associated harm, researchers have long advocated that tag masses should not exceed 3% of carrier body mass. However, this ignores tag forces resulting from animal movement. Using data from collar-attached accelerometers on 10 diverse free-ranging terrestrial species from koalas to cheetahs, we detail a tag-based acceleration method to clarify acceptable tag mass limits. We quantify animal athleticism in terms of fractions of animal movement time devoted to different collar-recorded accelerations and convert those accelerations to forces (acceleration x tag mass) to allow derivation of any defined force limits for specified fractions of any animal’s active time. Specifying that tags should exert forces <3% of the gravitational force exerted on the animal's body for 95% of the time led to corrected tag masses that should constitute between 1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in four carnivore species encompassing two orders of magnitude in mass (ca. 2-200 kg), forces exerted by ‘3%’ tags were equivalent to 4-19% of carrier body mass during moving, with a maximum of 54% in a hunting cheetah. This fundamentally changes how acceptable tag mass limits should be determined by ethics bodies, irrespective of force and time limits specified.
published_date 2021-10-27T04:14:44Z
_version_ 1763753993782165504
score 11.016794